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ABSTRACT
Building upon our previous research regarding privacy issues in
the Smart Grid and Smart Building domain we explore these topics
in the area of software updates in critical infrastructures. Since vital
parts of the control in these cyber-physical systems are realized
on edge devices or are dynamically moved from the backend to
the edge devices, secure communication and computing in these
components are of vital importance to ensure overall dependability
of these systems especially when (software) changes are applied to
the system. Therefore in this paper, we compare and analyze secu-
rity features and approaches of three IoT frameworks that provide
means to implement distributed control of critical infrastructure.

1 INTRODUCTION
There is a trend of moving computation tasks from the cloud to
the edge, which has advantages such as reduced end-to-end la-
tency, continuous service without permanent connection to the
cloud, optimized usage of network bandwidth, and reduction of
costs [15]. Cloud providers, such as Amazon Web Services (AWS)
and Microsoft Azure, have reacted by introducing their own tool
set for integrating and managing the edge, which may consist of
hundreds of heterogeneous systems. The ERA-Net funded project
LarGo! aims are developing and testing processes for the large scale
rollout of software in the cyber-physical system (CPS) Smart Grid
– in the power domain as well as in the user domain. The project
investigates problems that arise from the interlocking of two net-
works – the power grid and the communication network. A first set
of requirements for the rollout process was derived and the chosen
approach to verify the resilience of the developed processes under
research was described in [13].

Especially when modifying parts of the cyber-physical system
– physically and on the software control layer – it is important
to guarantee technical data protection, by using authentication,
authorization, and encryption; nevertheless, other threats also arise.
Security threats regarding confidentiality, integrity, availability,
authentication, non-repudiation, and access control were surveyed
in [10] showing that in Internet of Things (IoT) use cases, security
issues need to be properly handled on all of the three levels – the
device level, the network level, and the cloud level. The device level
introduces further complications, as there are limitations to the
means that are possible to be implemented on these devices due
to their constrained battery capacity and computing power [17].
Furthermore, the physical access has to be taken into account, as for
example, sensors attached to IoT devices in the CPS could be used
to extract information or to trigger malicious activities in order to
compromise the device [16].

A concept for ensuring privacy, also incorporated in the Eu-
ropean Union’s General Data Protection Regulation (GDPR), is
’privacy by design’ that takes data privacy into account from the
very beginning and throughout the whole product life cycle [11]. It
imposes the implementation of data privacy and information secu-
rity attributes before the products’ launch and usage by embedding
privacy directly into the design of the product. As in the case of
security, privacy also needs to be taken care of on device level, dur-
ing communication, while processing, and when storing data [14].
In previous work, we surveyed approaches to ensure privacy in the
CPSs Smart Grid and Smart Building domain from both the (Aus-
trian) legal as well as from the technical perspective [3, 7]. We argue
that the enumerated solutions derived from the Smart Metering
context – data minimization, data aggregation, data anonymization,
data obfuscation, minimal and local data storage, as well as data
sovereignty and control by the customer – can be mapped to other
types of personal data arising in cyber-physical systems as well as
in IoT use cases.

Ammar et al. compared eight main IoT frameworks, namely
AWS IoT, ARM Bed, Azure IoT Suite, Brillo/Weave/AndroidThings,
Calvin, HomeKit, Kura, and SmartThings, regarding their secu-
rity features [1]. While their implementation into the frameworks
differ, all of the evaluated frameworks support authentication, au-
thorization and access control, as well as secure communication on
a certain level. It is state-of-the-art to encrypt all communication
to the outside of an IoT device, irrespective of whether it is to the
cloud or local communication between the devices. As IoT devices
could be stolen or moved, suitable physical protection is necessary.
Therefore, the device itself, as well as every communication, needs
to be protected against unauthorized access, interception and mod-
ification, for example, by using mechanical locks, authentication,
and encryption [3, 7]. Furthermore, it is necessary to keep encryp-
tion algorithms exchangeable as the lifetime of an IoT device may
exceed the security provided by today’s encryption algorithms [12].

Security is especially important, once the CPS is modified via a
software rollout. Therefore, this paper focuses on security features
of three state-of-the-art IoT frameworks which, when used within
critical cyber-physical systems like Smart Grids, can influence the
resiliency of the overall system during a software update. When
software is rolled out, there are estimations about the devices’ be-
havior (e.g., communication frequency, communication partners,
control values) before, during and after the update. There are two
options for systems to react on violations of the expected behavior
(anomalies):

• a priori by interventing message transmission by filtering
out unexpected and thus not-permitted messages, or

• a posteriori by monitoring all messages or by receiving notifi-
cations on the unexpected behavior and reacting afterward.
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We will show, how those options have been integrated into
an application framework we introduced in earlier publications
(Section 2). This workshop paper cannot provide a detailed survey
on a high number of IoT frameworks, such as provided by Ammar
et al. [1]. Thus, we selected the IoT solutions of the two currently
leading cloud providers ([2]) Amazon Web Services and Microsoft
Azure to describe how they handle those aspects (Section 3 and 4).
In addition, we will briefly describe how updates (including security
updates) are handled in these frameworks.

2 ISSN APPLICATION FRAMEWORK
In previous work we introduced an application framework for mod-
ular Java applications in the Smart Grid domain [5, 6, 9], running
in the intelligent secondary substation node (iSSN) and commu-
nicating over a shared message bus. Until now about 20 of those
applications have been developed throughout various project set-
tings in which this framework is in use both within simulations as
well as in field tests [4]. We introduced proxies that can be attached
to a vendor-createdmodule by an operator-controlled configuration.
They can be attached to both the sender and the recipient module
(Figure 1). Using these proxies, the normal message transmission
procedure of the module is interrupted to run operator-defined
code for executing additional message processing steps, including
validity checks and modifications of the received or sent messages.
Furthermore, the number of proxies used in the context of a mod-
ule is not limited, thus a sequence of proxies can be configured.
This can be done independently for incoming and for outgoing
messages.

Figure 1: iSSN Security and Monitoring Proxies

2.1 Message Filter Proxies
Message Filter Proxies (MFP) [5] are used to restrict communication
between modules. In a motivating example, a module is responsi-
ble to control the on-load-tap-changer (OLTC) transformer in the
secondary substation. Applications can access current information
on the tap position and can issue requests regarding tap position
changes. However, the operation of the transformer is critical due
to active interference with grid operation. Thus, it must be ensured
that only authorized modules are able to issue those tap change
requests and that the commands of these modules do not contra-
dict each other. Therefore, modules are equipped with proxies that
monitor and control incoming and outgoing messages, such that

messages which are identified as prohibited can be filtered out. The
simplest variant, introduced in [5], just checks whether the type of
the message is among the allowed types and communication with
the other party is permitted:

• On the sender side: check message type and receiver; if per-
mitted send message, drop it otherwise.

• On the receiver side: check message type and sender; if per-
mitted hand message over to module, drop it otherwise.

In summary, message filter proxies allow to automatically moni-
tor and control the communication of a third-party module without
requiring an in-depth inspection by the operator. Thus, the opera-
tor is not required to fully trust third-party modules. In the given
example case, a simple message filter proxy was defined at the re-
cipient side of the module to drop all incoming tap change request
messages that were not issued by an allowed sender module. These
message filter proxies can be further extended by including other
information into their decision.

During a software update in a Smart Grid parts of the control
components could be deactivated. In this case, it might be necessary
to temporarily inhibit certain control flows that might lead to unde-
sired states. By using MFPs the control flow from an application can
be deactivated in parts, without the need to disable the complete
application.

2.2 Message Monitoring Proxies
A less intrusive approach is the monitoring of a system’s behavior
via Message Monitoring Proxies (MMP). In [9] we introduced a
simple logging proxy to log all passing messages; however, in use
cases with a high number of modules (cf. [4]), this approach quickly
becomes unmanageable. Therefore, we are currently working on a
graphical monitoring tool that makes use of MMPs to audit all mes-
sages in real time or post-mortem by utilizing an optional NoSQL
database. In cooperation with the MFP, it is suitable to configure
a pair of MMPs with the MFP in-between (Figure 1). Thus, not-
permitted message transfers (i.e., messages dropped by the MFP)
could be identified and visualized. The operator can react on de-
tected violations afterward; for example, by attaching a properly
configured MFP.

A software update process needs to verify that the update led
to the desired system behavior. Therefore the system must be able
to detect anomalies, i.e., deviations from the expected behavior.
Since this also involves the message flow between different system
components, MMPs can be used to retrieve the needed information
for their detection.

2.3 Message Encryption Proxies
Message Encryption Proxies (MEP) [5] are used for encrypted trans-
mission of messages on the message bus1. In that way, they deny
malicious third parties to read communication between modules.
As all messages, including the events generated by the MMP, shall
be properly encrypted, the MEP needs to be the last proxy defined

1For simplification, MEPs include the decryption proxy on the receiver side. Monitoring
events originating at the receiver side, in fact, cannot use the same MEP as incoming
messages.
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on the sender side, and the first one on the receiver side. Further-
more, messages could obviously not be evaluated at any other proxy
below the MEP. Necessarily, such an MEP also needs to be attached
to the backend’s monitoring module.

2.4 Management and update mechanisms
The operator manages and observes a high number if iSSNs re-
motely by use of a dashboard. This includes provisioning of soft-
ware on these devices [5, 6, 9]. Thus, the system includes abilities for
issuing installation, update, or uninstallation tasks for applications
on the devices, as well as for monitoring the results of periodical
health checks. Furthermore, the configuration of a module can be
modified during the module’s runtime, including to attach and de-
tach proxies. Within the LarGo! project, we currently investigate
the large scale and controlled deployment of applications to a high
number of devices – for example, by utilizing a schedule or based
on conditions in the CPS.

3 AWS IOT
Amazon Web Services (AWS) provides a suite of tools for the IoT2.
In this paper, we only evaluate a selection of their tools, as relevant
for security and resilience of edge devices in critical CPSs.

3.1 AWS IoT Device Defender
The AWS IoT Device Defender3 audits device configurations and
detects anomalous behavior of devices by utilizing configured se-
curity policies. Devices are continuously checked for deviations of
those policies to check whether they work within defined borders.
Once a behavior profile violation is detected, an alert is sent either
to the AWS IoT Console, to Amazon Cloudwatch or via a Simple
Notification Service (SNS) topic, which in turn can notify the user
by push messages to a mobile devices’ app, by AWS Lambda, Ama-
zon SQS, Email or SMS. Observable behavior violations4 can be
distinguished into cloud-side metrics5 and device-side metrics6.
The operator then needs to react properly on these alerts. Thus, –
similar to the monitoring proxies in the iSSN application frame-
work – the AWS IoT Device Defender does not prevent the attached
programs to communicate. However, the derived information can
be used in the context of software updates in critical infrastructures
to detect anomalies.

3.2 AWS IoT Greengrass
AWS IoT Greengrass7 extends AWS cloud capabilities to local de-
vices, allowing to collect and analyze data locally, and thus process
it closer to the source of information. It allows to locally run AWS
Lambda functions and to communicate with other devices securely,
while not necessarily being always connected to the cloud or to
2https://aws.amazon.com/iot
3https://aws.amazon.com/iot-device-defender/
4Behavior violations can only be combined by a conjunction (logical AND). Disjunc-
tions (logical OR) are possible by defining additional rules.
5Supported cloud-side metrics are configurable thresholds for the number of autho-
rization failures, of connection attempts, of disconnects, and of messages received;
furthermore, the message size, and the source IP.
6Supported device-side metrics are configurable thresholds for the number of bytes
in and out, and the number of packets in and out; furthermore the destination IPs,
listening TCP/UDP ports or their count, and established TCP connections count.
7https://aws.amazon.com/greengrass/

the Internet at all8. Locally deployed Lambda functions are either
on-demand functions, triggered by local events, messages from the
cloud, or other sources, or long-lived functions that run indefinitely.
They can also access local resources and are thus able to interact
with peripherals.

Communication between the edge devices as well as to the AWS
cloud is done using the MQTT protocol. For secure communication,
authentication and authorization, local connections use MQTT
over TLS, utilizing a public/private key pair and certificates. For
connections to the cloud, web sockets and the AWS identity (access
key id, secret access key pair) is used. Furthermore, every device
has an attached policy to define what it is allowed to (Listing 1).
For example, it can be restricted to which MQTT topic a device can
publish to, or which resources it is permitted to access.

{
"Version": "2012 -10 -17",
"Statement": [

{
"Effect" : "Allow",
"Action" : [ "iot:Publish", "iot:Connect" ],
"Resource": [ "*" ]

}
]

}

Listing 1: Example AWS Policy for a device

For evaluation of the AWS IoT suite, especially for edge devices,
we built up a smart home demo use case connecting several Rasp-
berry Pis with attached sensors and actuators (Figure 2). On each
received value, a local AWS Lambda function is executed that adds
the sensed value to a local time-series database instance [8]. Thus,
in this installation, only the configuration of the devices is located
in the cloud, while data is stored and analyzed on the edge backend
only – therefore privacy can be kept.

Figure 2: AWS IoT Greengrass Demo Architecture

8One device, namely the Greengrass Core, necessarily needs to reconnect to the cloud
periodically, e.g., to renew certificates.

https://aws.amazon.com/iot
https://aws.amazon.com/iot-device-defender/
https://aws.amazon.com/greengrass/
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3.3 Management and update mechanisms
The AWS IoT Device Management9 tool is used to manage device
groups that may contain even hundreds of cores. Since each device
has a device shadow in the cloud, the device can be managed even if
currently not connected. Even though the AWS IoTDevice Defender
does not prevent attached programs or devices to communicate, it
is thus easy to react on violation notifications by rolling out patches
to the devices or by restoring it to a "good" state.

Though mainly suited for the "normal" Lambda functions de-
ployed in the AWS cloud, local Lambda functions can be retrieved
from the app-store-like AWS Serverless Application Repository10.
They can only be executed on the Greengrass core device; however,
as the only device in a Greengrass group connected to AWS IoT is
the Greengrass core, it is not possible to roll-out any software to
other devices in the group, anyways.

4 MICROSOFT AZURE IOT
Microsoft, similarly, provides cloud-based tools for the IoT that en-
ables bi-directional communication between devices and the cloud,
named Azure IoT11. Furthermore, Azure extends the cloud capabil-
ities by allowing data collected and manipulated on the edge using
Azure IoT Edge12, comparable to AWS Greengrass. It uses locally
running Azure Functions, analogous to Greengrass’ local Lambda
functions; and the IoT Hub Device Provisioning Service, analo-
gous to AWS’ Device Management. To secure the traffic between
the cloud and the edge device, or between the edge device and its
children devices TLS is used; the device identity management unit
ensures that only authorized devices are able to connect to the cloud.
Besides MQTT, AMQP, and HTTP, other communication proto-
cols are supported via so-called protocol gateways, which securely
transport the aggregated data to the cloud. Behind those gateways
there are usually constrained devices, hence the communication
in-between is not secured due to their limited capacity.

Azure also provides tools to detect anomalies and undesired
behavior, but in contrast to AWS’ Device Defender, at a finer grained
level. Thus, it is possible to define rules that not only describe the

9https://aws.amazon.com/iot-device-management/
10https://aws.amazon.com/serverless/serverlessrepo
11https://azure.microsoft.com/overview/iot/
12https://azure.microsoft.com/services/iot-edge/

correct behavior of the IoT Edge modules themselves, but also
the correct behavior of devices connected to those modules. For
example, if the edge device detects an anomaly via a rule, defined
centrally in the cloud and deployed to the device, a notification is
sent to the cloud which causes further actions. On the Azure cloud
level, it is possible to react on alerts of one or more devices and
to create jobs that execute methods taking countermeasures on
those devices. In addition, machine learning models can be trained
to detect anomalies by using the metrics from the devices. These
means can be used to implement anomaly detection to ensure that
a software rollout in the system leads to the desired state.

Furthermore, Azure provides means to partition the set of de-
vices the system consists of into Trust Zones13, to build up smaller
segments, for example, for analyses at a fine-grained level. For each
of these zones, it is possible to define separate authentication and
authorization requirements as well as zone-specific threats in order
to isolate the potential damage.

5 CONCLUSION AND OUTLOOK
It is important to secure a CPS like the Smart Grid especially when
parts of the CPS are modified during a software update. To ensure
security, the system must be able to react on deviations of the de-
vices’ expected behavior during the software rollout. Therefore
either the communication between devices in the CPS can be fil-
tered or, less intrusive, be monitored for anomaly detection. The
approaches of three IoT frameworks to ensure security on the edge
in these systems were compared as summarized in Table 1.

Both AWS and Azure provide a full framework including provi-
sioning, secure communication, and possibilities to detect anomaly
behavior on the device level, the network level, and the cloud level.
While AWS provides simple metrics detection only, Azure also al-
lows to quickly react to this behavior by taking countermeasures
and offers more sophisticated methods at different levels. However,
both cloud service providers only provide means of security if their
solution is applied to all components in the system; thus, it is not
possible to manage heterogeneous systems with AWS or Azure.

13https://buildazure.com/2018/12/20/iot-security-architecture-trust-zones-and-
boundaries/

iSSN AWS IoT Azure IoT
Provisoning / Rollout via web-based

provisioning backend
via cloud via cloud

Rollout Target all devices to Greengrass core only all devices
Encryption as defined by MEP asymmetric asymmetric
Violation Reporting to monitoring backend,

or as defined by MMP
to cloud to cloud

Extendability very flexible using proxies rigid flexible
Violation Handling filtering (MFP),

reporting (MMP)
reporting user defined

Function Exec Environment native sandbox sandbox
Table 1: Comparison Summary

https://aws.amazon.com/iot-device-management/
https://aws.amazon.com/serverless/serverlessrepo
 https://azure.microsoft.com/overview/iot/
https://azure.microsoft.com/services/iot-edge/
https://buildazure.com/2018/12/20/iot-security-architecture-trust-zones-and-boundaries/
https://buildazure.com/2018/12/20/iot-security-architecture-trust-zones-and-boundaries/
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