
Symposium on Innovative Smart Grid Cybersecurity Solutions 2017  Vienna  Austria

Security Concepts in a Distributed Middleware

for Smart Grid Applications

Stephan Cejka  Albin Frischenschlager  Mario Faschang  Mark Stefan

Abstract – Novel software applications are developed and used in

order to take full advantage of Smart Grid and Smart City infra-

structures. In our concrete Smart City field trial, a distributed

middleware is used to connect such interacting Smart Grid appli-

cations. This work presents a threat analysis for this middleware-

based communication containing six potential attack patterns. As

countermeasure against the potential attacks, we present the secu-

rity concept for the interacting Smart Grid applications consisting

of the middleware’s encryption layer and trusted applications.

1. Introduction

The evolution from passively operated to intelligent secondary

substations (iSSN) allows for novel functions (e.g., voltage and

(re-)active power control, distributed generation optimization,

market interaction) by having increased computational power and

newly attained communication. These functions are realized by

distributed software components – so called smart grid applica-

tions – within the substations. Such applications are interlinked

and interacting through a common middleware. In previous work,

we presented a flexible and modular software ecosystem for iSSNs

including such a middleware, which acts as communication infra-

structure that allows for the operation of distributed smart grid

applications (cf., [1-4]). This work focuses on the security consid-

erations of such a middleware to protect both local and remote

interaction of the smart grid applications.

2. Gridlink

We introduced the Gridlink – based on vert.x – as a middleware

solution for the iSSN, using a distributed event bus based on an

asynchronous communication model. Gridlink-based systems are

built of several modules, each of them communicating with each

other by exchanging messages. Modules are able to join or leave at

any time without influencing other modules’ execution. As there is

no single point of failure, a fail of any module neither prevents

other modules to be further executed nor to communicate with

remaining modules. A cutback of the overall function of the app in

such cases is obvious, but can be limited by using redundant

modules and reasonable timeouts to react on failed transmissions.

Messages are either sent to a designated module role address or

published to a topic address reaching all registered modules, by

default being marshaled into a JSON representation for transmis-

sion. Dedicated proxies are executed before the message is trans-

mitted, allowing to execute additional message processing steps,

including its modification, e.g., for encryption. Proxies and the

demarshal process on the recipient’s side works likewise before

the message is handed over to the module's service handler and

processed. Furthermore, the Gridlink contains a service registry,

where all currently attached running modules are listed to all other

modules. Further details, including an in-depth description of

Gridlink proxies are available in [2, 3].

3. Threat Analysis of Gridlink Message

Exchange

We identified several potential security issues regarding the mes-

sage exchange procedure in Gridlink. The intended scenario for

this document is pictured in Fig. 1. There are one source module

as sender of messages and one sink module that should receive

them. In the given example, two messages (msgX, msgY) are sent

by a module with address A to a module that holds role B.

Fig. 1: Intended Scenario

Modules register themselves to roles/topics to receive messages

sent/published to the respective address. It is possible to get regis-

tered to a role, while another module is already registered to it.

The intended behavior of vert.x in that case is to deliver a message

to the respective modules in round-robin fashion.

3.1 Role Claim Attack (a)

A malicious module (B’) also registers for role B. The result is

shown in the figure; half of the messages are not received at the

intended receiver. Data can be read by the malicious module that

should not be visible to this module.

Fig. 2: Role Claim Attack

A B
msgX

msgY

A B
msgX

msgY

B’

Stephan Cejka  Albin Frischenschlager

Siemens AG, Corporate Technology

Siemensstraße 90, 1210 Vienna, Austria

[stephan.cejka, albin.frischenschlager]@siemens.com

Mario Faschang  Mark Stefan

AIT Austrian Institute of Technology,

Donau-City-Straße 1, 1220 Vienna, Austria

[mario.faschang, mark.stefan]@ait.ac.at

Symposium on Innovative Smart Grid Cybersecurity Solutions 2017  Vienna  Austria

3.2 Topic Claim Attack (b)

A malicious module (B’) also registers for topic B. While in this

case, in contrast to attack (a), all messages are received at the

intended sender, the malicious module also receives all messages.

Data can be read by the malicious module that should not be

available for this module.

Fig. 3: Topic Claim Attack

3.3 Spoofing Attack (c)

The malicious module (A’) is located on the sender side. Messages

that are sent from the malicious module look like they were from

the intended module. Module B will not be able to tell messages

from module A and the malicious module apart.

Fig. 4: Spoofing Attack

3.4 Denial of Service Attack (d)

A module may be forced to a denial of service if a malicious

module sends messages that are complicated to handle or the

number of messages exceeds the number of messages able to

handle.

3.5 Event Bus Blocking Attack (e)

vert.x – and thus Gridlink – uses an event bus thread shared be-

tween all modules running on one node. If a malicious module

gets stuck or behaves unexpectedly, all other modules on the node

are affected or even blocked.

3.6 Invisible Module Attack / Registry Attack (f)

A Gridlink module registers itself in the registry on startup. If any

module is a vert.x “verticle”, but not a Gridlink module, commu-

nication over vert.x happens as intended but the module remains

invisible to other Gridlink modules as no register in the registry

takes place.

4. Introduction of Gridlink Security

Measures

The use of Gridlink proxies for encrypting messages before

sending and decrypting them again at the receiver denies that

malicious module can read the communication. These proxies can

either use symmetric or asymmetric cryptography. By use of such

proxies only features that are already included in the Gridlink are

utilized; cryptography proxies are thus termed the Gridlink

Security Layer establishing end-to-end encryption (Fig. 5).

Mentioned attacks – however – can only partly be solved by it:

 Malicious modules of attack scenarios (a) and (b) will

still receive messages. However, they will not be able to

read these encrypted messages.

 An open problem is that the second message will still

not be received at module B in attack (a). The only pos-

sibility is to resent the message, introducing other issues

regarding the detection of messages that were not re-

ceived on the sender’s side.

 Messages that are sent by the malicious module in at-

tack (c) cannot be understood by the receiver due to

their incorrect or not existing encryption.

Fig. 5: Example for encryption of payloads by use of proxies

(Gridlink Security Layer) [2]

The Denial of Service Attack (d) cannot fully be sorted out by

encrypting the messages as the recipient has effort for decryption.

Malicious messages that would require high effort at the recipi-

ents’ side can however be sorted out.

The introduction of Trusted Gridlink Applications allows for

module certification. An execution of uncertified and thus untrust-

ed modules beside trusted ones on the same physical node may be

prohibited. This partly solves the Event Bus Blocking Attack (e),

as the influence of untrusted to trusted modules’ execution re-

mains limited.

The introduced security measures are state-of-the-art and will

solve most of the presented typical and severe attack scenarios.

Currently work is ongoing in order to sort out system-specific

attacks like the Module Registry Attack (f).

Acknowledgements

The presented work is conducted in the “iNIS” project, funded and

supported by the Austrian Ministry for Transport, Innovation and

Technology (BMVIT) and the Austrian Research Agency (FFG).

References

1. Faschang M, Stefan M, Kupzog F, Einfalt A, Cejka S (2016)

“iSSN Application Frame” – a flexible and performant

framework hosting smart grid applications. CIRED Workshop

2016, doi:10.1049/cp.2016.0694

2. Faschang M, Cejka S, Stefan M, Frischenschlager A, Einfalt

A, Diwold K, Pröstl Andren F, Strasser T, Kupzog F (2016)

Provisioning, deployment and operation of smart grid applica-

tions on substation level. Computer Science – Research and

Development (CSRD), doi: 10.1007/s00450-016-0311-x

3. Cejka S, Hanzlik A, Plank A (2016) A framework for com-

munication and provisioning in an intelligent secondary sub-

station. 2016 IEEE 21
st
 International Conference on Emerging

Technologies and Factory Automation (ETFA), doi:

10.1109/ETFA.2016.7733591

4. Einfalt A, Cejka S, Diwold K, Frischenschlager A, Faschang

M, Stefan M, Kupzog F (2017) Interaction of Smart Grid Ap-

plications supporting Plug&Automate for intelligent second-

ary substations. 24
th
 International Conference on Electricity

Distribution (CIRED), to appear

A B
msgX

msgY

B’

A B
msgX

msgY

A’

ms
gX
’

ms
gY
’

Sender Receiver

Logging Proxy Logging Proxy

Encryption Proxy Decryption Proxy

GL

