
A Framework
for Communication and Provisioning
in an Intelligent Secondary Substation

Stephan Cejka, Alexander Hanzlik, Andreas Plank
Siemens AG, Corporate Technology

Email: [stephan.cejka, alexander.hanzlik, andreasplank]@siemens.com

Abstract—Gridlink provides a communication infrastructure
for the implementation of distributed control systems in Java. It
is a completely decentralized solution where the communication
partners dynamically form a cluster of known instances during
execution. Gridlink uses a distributed event bus based on an
asynchronous communication model. A typical Gridlink system is
built from a set of modules that execute a distributed application
and that communicate with each other by exchanging messages.
We present a smart grid use case dealing with the detection
and handling of voltage band violations in low voltage networks
deployed in secondary substation nodes.

I. INTRODUCTION

Conventional electric power grids traditionally follow a
centralized approach for power generation, transmission and
distribution with few producing power plants in the high volt-
age grid and many consumers (households) in the low voltage
grid. The on-going trend for decentral power management
and renewable resources drives forward the evolution of so-
called Smart Grids that integrate additional power sources,
e.g., photovoltaic plants into the medium and low voltage
power grid. Their integration increases power management
complexity and imposes additional efforts for maintaining grid
stability, primarily regarding load balancing and adjustment.

An important component in the electric power grid is the
secondary substation node (SSN) [1], [2] that connects local
commercial and residential users to the power grid transmis-
sion network. The task of the SSN is the distribution of electric
power within a bounded voltage level to customers. Tradition-
ally, the enforcement in case of problems is done by reinforc-
ing the power line or replacing the transformer. Common SSNs
are isolated devices in terms of communication; the interaction
with and maintenance of them require physical presence of
servicing personnel on site. New approaches suggest using
active voltage regulation measures, e.g., on-load-tap-changer
transformers [3]. Industrial research in automating low voltage
grids is ongoing and products are under development (e.g.,
[4]–[6]).

To ease interaction and to reduce maintenance efforts and
costs it is reasonable to provide access to the SSN from
a remote control center over a communication network. We
propose an architecture for an intelligent SSN (iSSN) [7] that
comprises a set of interacting software modules executing a

distributed application and communicating with each other. A
typical iSSN application operates in an environment having
various sensors (like meters) that transmit measurement data
to processing modules for computation and generation of
control data. Among actor modules may be a storage module
for the persistence of measurement data, an analysis module
operating on storage data to detect anomalies in the grid,
a dashboard module providing visualization of the current
grid state to the operator or modules that control peripheral
components. Furthermore, a module for the detection of future
grid problems based on current data and forecasts is in devel-
opment. Once such problems are identified, an auction module
could be initiated to call flexibilities from smart buildings [8]
as shown in a proof-of-concept [9]. Such a message based
control system produces considerable amounts of data the
management and timely distribution of which requires an
efficient, resilient, modular and scalable communication infras-
tructure [7]. Gridlink provides such an infrastructure based on
an embedded message bus and designed for implementation
of distributed control applications. Communication between
modules is asynchronous and completely decentralized. The
failure of a module does not prevent the remaining modules
from communicating.

The rest of this paper is structured as follows: In Section
II we introduce Gridlink - its features, terminology and ar-
chitecture. Section III deals with application provisioning. In
Section IV we provide a smart grid application case study and
experimental results. Section V concludes the paper with the
lessons learned and with an outlook to the future work.

II. GRIDLINK

The Gridlink architecture is based on the vert.x1 distributed
event bus used for communication between modules. Discov-
ery of other modules is achieved by forming a Hazelcast2

cluster, which in turn uses multicast messaging per default
[10]. In addition to an earlier platform (e.g., [11]), Gridlink
improves modularity with new functions like the service
registry and provisioning features, which constitutes also the
added value of Gridlink to vert.x. An exhaustive evaluation
with comparable approaches, however, is out of scope of this

1http://vertx.io
2http://hazelcast.com978-1-5090-1314-2/16/$31.00 c© 2016 IEEE

WiP paper that demonstrates the framework next to the current
project’s use case. Related work will be thoroughly considered
when these findings lead to practical applications in the field.
Various aspects, like security, which are – without doubt –
important, are therefore also not part of this contribution.
Gridlink’s API provides classes for common functionalities
such as configuration file handling, Gridlink group forming
and the registry.

Gridlink allows distributed execution of an application using
modules, each of which providing a certain functionality. A
module is a Java program that

1) implements a dedicated functionality,
2) takes over one or more roles,
3) is addressable and reachable over the event bus via one

(or more) role address(es), and
4) provides functions to other modules.

These modules utilize the Gridlink core API and use common
or self-defined services. Messages are transmitted to a module
by specifying its destination role. This role has to be claimed
first by the intended receiver module, e.g., as shown in Fig. 1
a storage module may take over the role storage, by which it is
reachable by other modules. The same role can be registered
and used at various receiver handlers. Modules that have not
been registered to any role can serve as message producers
only (e.g., a simple data generator) but are not addressable and
thus cannot react to any messages from other modules. Each
role can provide handlers for serving one or more services
(e.g., a service handler for adding a measurement to the
data storage). Therefore, a role can be seen as a container
that groups related services. The module which implements
the required service executes the service function and sends
a reply to the requesting module, if applicable. Message
handling is based on an asynchronous communication model,
which allows for an efficient and scalable implementation and
concurrent transmission of large amounts of data over the event
bus. Assignment of services to modules is transparent. The
requester of a service shall not need to know which module
implements which service. To gain access to a service, only
the role and the service name have to be known. Fig. 1 shows
a module StorageModule registered for role storage (and an
implicit shutdown role as described later). The role storage
provides several services (e.g., createDataPoint).

StorageModule

storage

. . .

shutdown

createDataPoint
addMeasurement
getMostRecentValue
. . .

Fig. 1. Modules, roles and services

The Gridlink design contains no single point of failure since
there is no central component like a server, and modules can
be dynamically added or removed. Thus, the failure or removal

of nodes does not prevent the remaining nodes from working
and communicating with each other. Naturally, this is not valid
whenever an implementation is dependent on messages from
or to components that are not available (plug & automate
paradigm). The only way to overcome the problem of failure
of essential components is replication by running the same
module on different hardware components which is supported
by the Gridlink architecture by design.

A. Communication

Communication between modules is handled by messages
transmitted on the Gridlink bus. All messages consist of a
type (e.g., indicating the request for adding a measurement
to the storage) and an optional payload (e.g., a measurement
entry) and are transmitted as JSON messages to the specified
recipient. Gridlink supports two types of communication:

1) send transmits messages to a module holding the
specified recipient role. Optionally a reply can be issued
to the sender, vital, e.g., when requesting data from the
storage. Note that if more than one module are registered
for the same role, only one of them is chosen for delivery
using round-robin fashion.

2) publish transmits messages to all modules registered
for the specified recipient topic (e.g., to implement
observer functionality).

Gridlink does not require specific message formats, as
implementations of requests, replies and events are use-case
specific. From a semantic point of view, events can be seen
as notifications, while requests indicate that the receiver is
expected to do something. In most cases, a reply from the
receiver of a request is expected. Messages are always trans-
mitted to the addressed receiver(s) only, optimizing event bus
bandwidth utilization.

B. Registry

Gridlink provides a distributed membership service avail-
able at each module, called the registry. It contains a list of
all modules currently active and reachable. For each module, a
list of roles implemented by a module is provided and finally
for each role the list of services it provides. Observers can be
registered to get informed whenever a node, module or role is
added to or removed from the bus.

C. Groups

Per default, a Gridlink bus (or cluster) is formed of all
modules running in the same subnet using the multicast
discovery of Hazelcast. However, for some applications it
may be necessary to separate modules and form groups to
prevent knowledge of and communication with group-external
modules. This is achieved by using a unique multicast address
for each group.

D. Gateway modules

Some applications require communication with components
outside a Gridlink system. This is done using gateway mod-
ules. A gateway module is an interface for communication

between the Gridlink bus and some external component us-
ing a dedicated communication protocol. Currently, Gridlink
provides gateway modules for REST and XMPP protocol
handling.

III. APPLICATION PROVISIONING

This term comprises typical software maintenance tasks like
installation (provisioning of new software), update (replace-
ment of existing software by another version), configuration
(parameterization of software during execution), start, stop, re-
moval and status information of modules. In a native Gridlink
system, these tasks are in the responsibility of the user who
performs these actions using a local or a remote access tool.
Modules serviced directly by the user are called unmananged
modules (see Fig. 2). To perform application provisioning, the
user has to interact directly with each single module.

Module A

Module B

Module C

Module D
User

starts

Fig. 2. Unmanaged (standalone) module

To make provisioning easier, an AppManager is added
who is responsible for the mentioned provisioning tasks. The
AppManager is a Gridlink module, therefore it is able to
communicate with other modules over the Gridlink event bus.
Additionally, the AppManager is a gateway that makes the
Gridlink system accessible from outside. The AppManager is
an unmanaged module, since it has to be started by the user.
Modules serviced by the AppManager are called managed
modules (see Fig. 3). Once an AppManager is available in
a Gridlink system, application provisioning can be done also
from remote sites. A failure of the AppManager crashes the
provisioning feature, but does not interfere with the operation
of other modules. All provisioning tasks are transparent to the
modules. The following paragraphs describes main provision-
ing tasks in more detail.

Module A

Module B

Module C

Module D
User

startsAppManager
starts

Fig. 3. Managed module

A. Module Installation

Module Installation refers to a functionality upgrade by
starting a new module. The installation of a module is triggered
from a remote site, e.g., by receiving an according XMPP mes-
sage. Modules are initially stored in an app store containing all
dependencies necessary to run the module. The AppManager
downloads the module archive, extracts it and launches it.

B. Module Update

Module Update refers to the replacement of a running
module with another version. A shutdown request is issued
to the module’s implicit shutdown role (c.f. Fig. 1). It stops
operation and optionally stores its state containing all informa-
tion required to continue properly after the update as defined
by the module developer in a file. There may be situations
where a module cannot immediately shut down, e.g., because
it is currently performing some critical action that cannot be
interrupted right away. In this case, the module refuses to
shut down and replies accordingly to the AppManager. The
AppManager reports an update failure to the back office and
indicates that a manual intervention is required. In case of a
success, the remainder of the update process is similar to the
installation process.

C. Configuration Update

Configuration Update refers to a modification of operation
parameters. It is a less severe intervention since it does
not necessarily require a module restart. The form and use
of configuration properties are in the sole responsibility of
the module developer and may, e.g., contain a list of roles
the module needs to communicate with. When triggering a
configuration update, the AppManager downloads the new
configuration file to the module working directory. The module
gets a notification when the file was changed. It is up to
the module to decide whether and how to handle this update
notification.

IV. GRIDLINK AND PROVISIONING ON THE ISSN

The use case deals with the detection and proper handling
of voltage band violations in low voltage networks. Modules
involved are shown in Fig. 4.

AppManager Storage Data Generator

Voltage
Problem Handler

(Voltage Guard) OLTC
Controller

Dashboard
Interface

Gridlink

XMPP REST

Fig. 4. Modules in this scenario

The AppManager module handles the software provisioning
tasks described earlier. For remote communication it provides
an XMPP connection. All other modules may communicate
with remote partners over the AppManager, which makes it a
gateway module.

For providing their functionality such as monitoring and
analyses, other modules require access to historical and current
time-series data. The Storage module is used for permanent
storage of measured voltage values and meta data. It utilizes
a Java-based embedded data store for persistence of time
series and meta data, shown to be superior to state-of-the-
art off-the-shelf solutions with respect to data retrieval time
and required storage size [12]. Frequent readouts, immutability
and statistical indicators, vital for this use case are optimally
supported.

The Data generator module generates measurement values
using predefined profiles simulating houses’ power consump-
tion during the day as well as power production in case they
are equipped with a photovoltaic (PV) installation.

The Voltage Problem Handler module is a monitoring
module that detects problematic voltages in the network below
220 V or above 240 V; upon detection of such a value the oper-
ator is notified such that proper countermeasures can be taken.
This voltage band was assumed for demonstration scenarios
identifying and detecting problems earlier than specified in EN
50160 [13]. Power quality criteria limits in EN 50160 would
allow 95 % of all 10 min average values within a week between
207 V and 253 V (Un ±10 %).

The Dashboard interface module is a gateway module
providing a REST interface. A web based dashboard connects
to this REST interface to provide a view on current and
historical values of sensors and the transformer.

The On-Load-Tap-Changer (OLTC) controller module is
a gateway module to transmit tap change requests to the
transformer [3]. The effect is an increase of the voltage level
by 2.5 V on tap up, a decrease on tap down respectively.

The Voltage Guard module is an analysis module that is
not started in the beginning, but installed by the AppManager
on demand (e.g., after the problem handler has indicated a
problematic voltage value). If voltages below 225 V or above
235 V are detected at any data point in the network, the module
may decide to request the OLTC controller to change its
tap position [3]. An increasing number of tap changes has
a negative impact on the lifetime of the transformer; therefore
the number of tap changes should be kept at a minimum level
[14]. To avoid permanent tapping, the lazy algorithm in use
aims at not changing the tap position immediately when hitting
the barrier, but only when the amount of cumulative voltage
violations over time exceeds a defined integration threshold
value (ITV, given in [Vs]) [14], [15].

Fig. 5 shows the principle of this algorithm:
1) When leaving the acceptable voltage band the module

starts the calculation of the voltage-time area by inte-
gration of the observed deviations from the respective
voltage band barrier.

2) If this area exceeds the maximum ITV value, a change
of the tap position is initiated and the ITV is reset to
zero. Tap changes are avoided if they would lead to a
voltage band violation at any other data point in the grid.

Fig. 5. Integration Threshold Value (ITV) algorithm [15]

3) The calculation is restarted when leaving the acceptable
voltage band once again.

4) The calculation is paused when reaching the acceptable
voltage band once again.

5) The voltage-time area value is reset when crossing the
nominal voltage value.

Fig. 6. Low voltage grid scenario (adapted from [9])

The simulation scenario comprises four apartment houses
A, B, C and D (Fig. 6), characterized by the same standard
load profile H0 for households but differing in their peak
load. Houses in group A and D have an attached photovoltaic
power plant that produces energy between sunrise (05:00)
and sunset (20:30). An additional load (e.g., charging of a
battery) is active between 05:00 and 07:15 in house group C.
At 19:15, the Voltage Problem Handler module detects that
voltage drops below 220 V and notifies the operator (Fig. 7).

To react on voltage band violations, the operator decides
to install the Voltage Guard module that issues commands to
the OLTC to tap up/down if values below 225 V and above
235 V are detected. By its installation, the number of values in
the voltage band is increased (Fig. 8) such that the percentage
of values between 225 V and 235 V increase from 73.16 %
to 91.05 %. As values in the allowed range between 220 V

Fig. 7. Voltage curves before installation of Voltage Guard

and 240 V increase from 93.68 % to 100 %, all values remain
within the barriers. The setting of the ITV has a significant
impact on the number of tap changes: the higher the ITV
value, the more severe the observed voltage violations before a
reaction [15]. This simulation uses a moderate threshold value
of 7.5 Vs, resulting in 8 tap changes on this day, which is an
acceptable value recalling the negative impact of the number
of tap changes on the transformer’s lifetime [14].

Fig. 8. Voltage curves and OLTC tap position with Voltage Guard installed

V. CONCLUSION AND FUTURE WORK

We introduced the Gridlink middleware which provides a
framework for the development of distributed control systems
in Java. The Gridlink architecture and the software provi-
sioning feature was described in detail. Further, we presented
a smart grid application case study implemented using the
Gridlink middleware. This case study served as a proof-of-
concept to demonstrate the fitness of the Gridlink middleware
for the implementation of distributed smart grid applications.

Currently, the AppManager can only service modules started
on the same physical machine. In the future, it shall also be
able to service modules on remote machines by implementing
a multi-host-concept. We will replace the prototype data
generator with an IEC 60870 gateway module that is able to
receive and process real measurement data from smart meters.

Gridlink’s practicability is currently being investigated in the
course of field tests. We are about to shift the use of the
Gridlink from laboratory [16] to real environments [7] such
as various Austrian Smart Grid model regions, among them
Seestadt Aspern which is currently one of the biggest urban
development projects in Europe.

ACKNOWLEDGEMENTS
The presented work conducted in the “iNIS” project is funded and

supported by the Austrian Ministry for Transport, Innovation and Technology
(BMVIT) and the Austrian Research Promotion Agency (FFG).

We thank Tobias Gawron-Deutsch for helpful comments.

REFERENCES

[1] M. Alberto, R. Soriano, J. Gtz, R. Mosshammer, N. Espejo, F. Lemnager,
and R. Bachiller, “OpenNode: A smart secondary substation node and
its integration in a distribution grid of the future,” in Computer Science
and Information Systems (FedCSIS), 2012 Federated Conference on,
pp. 1277–1284, Sept 2012.

[2] R. Soriano, M. Alberto, J. Collazo, I. Gonzalez, F. Kupzog, L. Moreno,
A. Lugmaier, and J. Lorenzo, “OpenNode. Open Architecture for
Secondary Nodes of the Electricity Smartgrid,” in 21st International
Conference on Electricity Distribution (CIRED), Jun 2011. paper 770.

[3] A. Einfalt, F. Zeilinger, R. Schwalbe, B. Bletterie, and S. Kadam,
“Controlling active low voltage distribution grids with minimum efforts
on costs and engineering,” in Industrial Electronics Society, IECON 2013
- 39th Annual Conference of the IEEE, pp. 7456–7461, Nov 2013.

[4] Y. Chollot, P. Deschamps, A. Jourdan, and S. Mishra, “New approach
to regulate low voltage distribution network,” in 23rd International
Conference on Electricity Distribution (CIRED), Jun 2015. paper 1145.

[5] M. Mangani, F. Kienzle, M. Eisenreich, Y. Farhat Quinones, R. Bacher,
and A. Brenzikofer, “GridBox: An Open Platform for Monitoring and
Active Control of Distribution Grids,” in 23rd International Conference
on Electricity Distribution (CIRED), Jun 2015. paper 1070.

[6] S. Russwurm, “Web of Systems for a digital world,” Dec 2015. Keynote
at the Internet of Things World Forum 2015, Dubai; http://www.siemens.
com/press/pool/de/events/2015/corporate/2015-12-internet-of-things/
presentation-iot-russwurm web-of-systems-e.pdf [Online; accessed
14-April-2016].

[7] M. Faschang, M. Stefan, F. Kupzog, A. Einfalt, and S. Cejka, “‘iSSN
Application Frame’ – a flexible and performant framework hosting smart
grid applications,” in CIRED Workshop 2016, Jun 2016. paper 255.

[8] T. Gawron-Deutsch, F. Kupzog, and A. Einfalt, “Integration of energy
market and distribution grid operation by means of a flexibility operator,”
e & i Elektrotechnik und Informationstechnik, vol. 131, no. 3, pp. 91–98,
2014.

[9] T. Gawron-Deutsch, S. Cejka, A. Einfalt, and D. Lechner, “Proof-of-
Concept for market based grid quality assurance,” in 23rd International
Conference on Electricity Distribution (CIRED), Jun 2015. paper 1495.

[10] “Hazelcast FAQ.” http://docs.hazelcast.org/docs/3.5/manual/html/faq.
html. [Online; accessed 14-April-2016].

[11] M. Faschang, F. Kupzog, R. Mosshammer, and A. Einfalt, “Rapid control
prototyping platform for networked smart grid systems,” in Industrial
Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE,
pp. 8172–8176, Nov 2013.

[12] S. Cejka, R. Mosshammer, and A. Einfalt, “Java embedded storage
for time series and meta data in Smart Grids,” in 2015 IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm),
pp. 434–439, Nov 2015.

[13] CENELEC, “EN 50160:2010 - Voltage characteristics of electricity
supplied by public electricity networks,” Mar 2011.

[14] A. Plank, F. Zeilinger, and A. Einfalt, “Untersuchung der Effektivität von
Regelkonzepten in Verteilnetzen,” in 14. Symposium Energieinnovation,
Graz, Austria, Feb 2016.

[15] F. Zeilinger, A. Einfalt, K. Diwold, A. Plank, and A. Lugmaier, “Influ-
ence of Different Framework Conditions on the Effectiveness of Control
Concepts in Distribution Grids,” in CIRED Workshop 2016, Jun 2016.
paper 259.

[16] M. Stifter, M. Windhab, M. Zahedi, and A. Frischenschlager, “Smart
Meter Test Stand for requirement analysis of advanced smart meter
applications,” in Smart Electric Distribution Systems and Technologies
(EDST), 2015 International Symposium on, pp. 547–552, Sept 2015.

