
Knowledge-Based Software Management for the
Large Scale Rollout of IIoT Applications

Florian Kintzler
Siemens AG

florian.kintzler@siemens.at

Stephan Cejka
Siemens AG

stephan.cejka@siemens.at

Abstract—Complex cyber-physical systems (CPS), in which
Industrial Internet of Things (IIoT) technology is used, require
advanced software maintenance mechanisms to remain depend-
able and secure. A solution is needed that allows operators to
manage software in a CPS not only based on requirements from
the information and communications technology (ICT) domain
but also from the applications domain. The Knowledge-Based
Software Management (KBSM) described in this paper adds an
additional layer on top of existing software management systems
to integrate the management of the software domain and of the
physical domain. This framework was implemented and tested
in the smart grid domain as an example for a complex CPS.

I. INTRODUCTION

Cyber-physical systems (CPS) such as the smart grid [1],
[2] require secure and resilient mechanisms for the rollout
and management of software components for their ever in-
creasing number of managed devices [3]. The smart grid is
a critical infrastructure; therefore, security maintenance (e.g.,
security patches, firewall updates) becomes indispensable. The
exchange of operational data uses the same communication
channels as for maintenance of the information and com-
munications technology (ICT) domain. Moreover, the smart
grid consists of a combination of legacy systems, which are
relatively fragile to change, as well as novel devices and
software [4]. Such aspects might lead to potential failures
in the rollout process, for example, issues related to quality
of service in the communication network, faulty hardware,
software, or processes [5]. Several deployment processes and
application lifecycle management systems for a large scale
rollout of software applications in those systems were investi-
gated and evaluated in previous work [6]. However, state-of-
the-art deployment frameworks are limited in the types of de-
pendencies they support. This paper introduces a Knowledge-
Based Software Management (KBSM) framework built on-top
of those frameworks, which is able to include further levels
of dependency management for software rollout decisions.

II. LIFECYCLE MANAGEMENT AND ROLLOUT

The investigated use cases from the smart grid domain may
require numerous modular applications to be installed on a
high number of devices in the field without requiring staff
on the field site [7], [8]. They involve several intelligent Sec-
ondary Substations (iSSNs) and Building Energy Management
Systems (BEMSs) to be managed and supervised by a central

control center, for example, by the distribution system operator
responsible for the operation of a low voltage grid.

In previous work, several state-of-the-art application life-
cycles and deployment processes from the Internet of Things
(IoT) domain that seemed suitable for such a system were
analyzed, including software distribution tools (Eclipse hawk-
Bit, balena, SWUpdate, Gridlink provisioning framework,
iSSN Application Lifecycle Management), application servers
(Apache Karaf, Eclipse Virgo), as well as solutions of the
leading cloud providers (AWS IoT Greengrass, Azure IoT
Edge) [6]. In addition, a generic application lifecycle man-
agement framework [9] as well as an OSGi-based deployment
framework [6] were implemented. Generally, those systems
consist of a central backend and control system in the op-
erator’s sphere, responsible for the management of software
components on the field devices. They include mechanisms
for automated application provisioning, remote and automatic
configuration, and update of services. Most of the evaluated
frameworks include (at least a subset of) states as depicted
in a generic application lifecycle graph in Figure 1 (based
on Arcangeli et al. [10], the OSGi and the Docker lifecycle
graph). The common tasks (e.g., the installation, start, con-
figure, update etc. of software modules; cf. the transitions in
Figure 1) could either be initiated manually by a human op-
erator or automatically via (scheduled) scripts. Target devices
are connected to and controlled by this backend, with which
control messages and software artifacts are exchanged. On the
target system side, a device application management executes
the received commands (which may also include the download
of components) and replies its status to the initiator. By
generally utilizing a modular approach (e.g., OSGi modules or
Docker/OCI containers), the number of concurrently executed
applications even on one device may be high.

III. LEVEL OF DEPENDENCIES

The analyzed software management systems are designed
to roll out software to one or more devices; they need to
cover different levels and areas of dependency management.
In contrast to consumer IoT use cases, the installation of a
software module in a CPS may not affect one device only.
Those systems heavily interact with external systems, such as
the power grid; thus, unscheduled and unexpected influences
are more likely [8]. Therefore, a proper process in a CPS
for the rollout of applications to a massive number of devices
must take dependencies on various levels into account; beyond978-1-7281-2989-1/21/$31.00 ©2021 IEEE

Fig. 1. Generic lifecycle of applications [6]

of what state-of-the-art software rollout systems support. As
shown in Figure 2, these interface and functional dependencies
range from the device level (dependencies on the applications’
runtime environment like drivers, configured sensors etc.) via
the system level (protocols, services etc.) up to the domain
level (functional dependencies with respect to the controlled
physical system; e.g., two controller applications on separate
devices should not try to control the same physical parame-
ters). Although dependencies are always resolved to a Yes/No
answer, the question itself may contain uncertainties and value
ranges (e.g., “Is the voltage level at measurement point X
between 220V and 240V?”).

To ensure a given level of dependability of the CPS,
during and after the software rollout, it is important to cover
dependencies on all of these levels, rather than focusing on
one of those levels alone. For example, Figure 2 shows that
for a rollout of new functionality in a CPS, the management
system must on the one hand be able to answer questions on
all levels and ensure that the answers to these questions are
in a predefined range. On the other hand the system must be
able to apply actions on all of these levels.

In general, the dependencies of an application and its impact

on the power grid can either be system wide, or limited to
a sub-scope of the system. The update of an application that
optimizes the energy consumption within a household by using
a battery for specific consumers (e.g., garden lightning) but
without influence on the power grid, can be rolled out to
specific devices without taking other grid components into
account. In case the application has an effect on the consump-
tion from the power grid, the update of this application in
multiple households connected to the same branch in the low
voltage grid might have an effect on the voltage stability of
this branch, but is not likely to have an effect beyond the
boundaries between low and medium voltage sections of the
grid. The application could thus be rolled out in several steps,
each step covering a separate low voltage grid section to avoid
a blackout of all branches at the same time and to be able to
stop and rollback the rollout process in case of failures.

Analogue to transactions in the database domain, the rollout
process needs means to automatically rollback the state of
the involved distributed devices to a previous state. However,
such a complete rollback can only be ensured in the ICT
domain. Once an application altered the controlled complex
system (e.g., the state of the power grid), the recovery to a

Domain
Dependencies

(e.g. Power Grid)

System Level
Dependencies

(Devices, Protocols,
Connections, Frequencies, etc.)

Device Level
Dependencies

(Drivers, Libraries, OSGi
Modules, VMs etc.)

Resilience Is there (now) enough memory to

install app X?

Is protocol version supported by the
server compatible with version 3.4?

Is the voltage level at topological
point Z stable?

Will there by a stable PV output in the next hour?

Install/Start/Stopp/Configure App

Update Base Image

Install Certificate

Configure SDN

Switch Consumer to other
Low Voltage Branch

Fig. 2. CPS requirements pyramid. An integrated software management has to be able to answer questions and interact with the system on all levels.

UI / Controlling & Monitoring

Resiliency
Analysis

Knowledge
Service

Assisted Planning

Execution

Monitoring Service Domain A Action Service Domain B

Plan
Evaluation

Simulation /
Digital Twin

Software Management System A Device A.1 Device A.2

Device B.1 Device B.2 Device B.3

...

...

Physical System
(e.g. transformer,
power lines etc.)

Monitors Actions

Software Management System B

Monitors Actions

M AM

AM

Monitors Actions

Plan
Service

Service Registry and Proxy

Monitoring and Action Service Domain C ...

Event and
Anomaly
Detection

Monitors

Fig. 3. KBSM Framework. Monitoring and Action Services provide access to the ICP and the physical domain of the CPS.

stable, full-functional state of the overall sub-systems might
not be possible. To ensure that an application which is rolled
out works correctly, the output of the application could be
validated against a model of the environment [8], which
may include mathematical models, complex digital twins, and
load flow simulations. Once the discrepancy between the real
world measurements and its model/twin is above a predefined
threshold, a rollback is initiated. This validation cannot be
done in fully operational mode only, but also in a warm-up
(standby) phase in which the application receives input, but is
not yet permitted to provide output to other components and
hence, to alter the state of the environment.

If a heterogeneous set of devices is used in a CPS, it is likely
to also need a diverse set of software deployment systems,
since there are differing requirements for device types with
divergent hardware. However, none of the systems analyzed
by Cejka et al. [6] is able to include knowledge about the
physical environment and the functions of the software into
a rollout planning and execution process. Examples for these
properties include: bandwidth and availability of communi-
cation connections, connection of two different controllers to
the same physical system (that may lead to possible inter-
ferences of control actions), environmental constraints (e.g.,
weather predictions having an impact on the amount of energy
produced by a photovoltaic system), or constraints that could
prevent updates of a software component in a given system
state. By modeling the different (control) components of the
system and monitoring the discrepancies between the model
and the real world, control interferences (cf. [11]) and other
deviations from the expected behavior can be included into
the software update control flow.

IV. KNOWLEDGE-BASED SOFTWARE MANAGEMENT

Thus, the various types of dependencies in a CPS as shown
in Figure 2 cannot be addressed by use of the previously

analyzed evaluated systems alone. To resolve those limita-
tions, an additional layer of system management is proposed
which generates and executes software rollout plans on top
of existing software management systems and utilizes them
to alter the state of the CPS. Cejka et al. [6] briefly in-
troduced a Knowledge-Based Software Management system
(KBSM), which will be covered in-depth in this contribution.
Its components as shown in Figure 3 utilize knowledge about
the setup of the CPS and its components for the planning
process, including knowledge about the underlying software
deployment processes themselves.

A. Monitoring and Action Services

The proposed management component is based on a layer of
Monitoring and Action Services providing information about
the different sub-systems (domains) and the possibility to
interact with them.

The Monitoring Services can be configured to monitor any
state that is necessary to be fulfilled before changes can be
made to the systems, including real world sub-systems as well
as digital twins and simulation results. Examples in the power
system domain include whether the voltage level measured
by a given sensor is within a predefined range, whether a
given consumer is connected to a predefined branch in the
low voltage power grid, or – as a more general example –
whether the available memory on a given device exceeds a
certain threshold.

The domain-specific Action Services provide means to apply
changes (i.e., actions) to all parts of the CPS by executing
commands. The successful execution is ensured by monitoring
the state of the system using the mentioned Monitoring Ser-
vices. Therefore, the definition of the successful installation
of an voltage level stabilization algorithm could – besides the
successful start of the software itself – also include information
of other domains such as the observed voltage level.

The monitoring and actions components can be distributed
in the CPS on diverse sets of edge- and IIoT-devices. The
Monitoring and Action Services are registered at the Service
Registry and Proxy by descriptions (schemas) of the services
they offer, which are used by other components for the creation
and execution of plans.

B. Plan Management Service

A system to create and process rollout plans needs a sub-
system to store, retrieve and prevent modification of the plans.
Thereby, a plan consists of a set of actions to change the
state of the CPS to reach a given goal, a set of conditions
defining whether and when those actions are executed, and
finally a definition of cases in which an execution of the
actions is considered to be successful. Figure 4 shows one
action that is combined with a set of pre-conditions (defining
when an action shall be executed), a set of runtime-conditions
(monitoring the parameters of the systems state that should not
be violated during the execution, e.g., the maximum time for
a software installation or startup) and a set of post-conditions
(representing the definition of done). Those conditions can be
derived from any of the monitored domains.

Pr
e-

C
on

di
tio

n
Pr
e-

C
on

di
tio

n
Pr
e-

C
on

di
tio

n

Po
st
-(a

nd
-P
re
-)

C
on

di
tio

n
Po

st
-(a

nd
-P
re
-)

C
on

di
tio

n

Runtime-Condition

Runtime-Condition

||

&&

&&

||

Undo-Action

&&

Action

Runtime-Condition

Fig. 4. A plan step consists of logically combined pre-, runtime-, and post-
conditions as well as an action and an optional undo-action.

By using a condition as a post-condition for one action
and simultaneously as a pre-condition for another one an
execution graph emerges that is henceforth called a plan (see
subsection IV-G). The graph may have independent sections,
but is required to be loop free in order to be able to achieve
the desired (sub-)states.

The Plan Management Service (KBSM-PS), internally in-
cluding the plan evaluation and the database, implements an
interface to provide functionalities

• to create and update/modify a rollout plan in the database,
• to retrieve a plan from the database,
• to remove a rollout plan from the database,
• to lock/unlock a rollout plan in the database (s.t. it cannot

be modified during execution or evaluation), and
• to validate the structure of a plan in the database.

Plans are created either automatically, semi-automatically, or
manually; they are stored in the KBSM-PS for being executed
or displayed by other modules.

C. Execution

A rollout plan consists of a set of actions that are executed
when pre-defined conditions are met. It changes the state
of the system by described desired system state transitions

which can be monitored. The Execution component (KBSM-
E) executes a plan by transforming the planned state transitions
into concrete actions and by controlling the execution of these
actions according to the defined conditions.

Before executing a plan (e.g., on a command originating
from the operator via the UI), KBSM-E first retrieves the plan
from the KBSM-PS, checks its validity, and transforms it into
an execution graph. KBSM-E then starts monitoring the root
conditions by initializing and starting monitors for each of the
conditions. The monitors return one of four states UNKNOWN,
PRE-TRUE (condition is not yet met, but could be in the
future), TRUE (the condition is currently met), POST-TRUE
(the condition is no longer met and will never be met again).
Once the logical combination of the pre-monitors of an action
becomes TRUE, the monitoring of the runtime-conditions and
of the post-conditions is started and the action is executed
by the according Action Service. An action becomes blocked,
once the logical combination of its pre-conditions becomes
POST-TRUE. In that case the operator is notified who decides
whether the plan execution shall be stopped or a re-planning
(with a potential new goal) shall be started. The current status
of all monitors and actions is continuously reported to the
operator. KBSM-E uses functionality provided by the external
domain-specific Monitoring and Action Services as well as
the specific underlying rollout processes. It thus provides
functionalities

• to start, pause, resume, and stop the execution of a rollout
plan,

• to command the execution to ignore blocking issues,
• to report the status of the execution to the operator, and
• to use external, distributed components to monitor and

modify the state of the CPS.

D. Knowledge Service

The Knowledge Service component (KBSM-KS) contains
information about the CPS (including information about the
monitoring and action capabilities provided by the Monitoring
and Action Services) and methods to create a rollout plan.
Several different methods were implemented and evaluated
(e.g., usage of ontologies to describe the system’s components
and the relations) to realize a KBSM-KS that uses knowledge
about the CPS to derive a rollout plan. Thus, the following
properties can be stored in the KBSM-KS: the properties of
software components (e.g., size, memory usage), computation
devices (e.g., available memory, software environment), the
controlled physical system (e.g., for the exemplary use case:
tapped transformers, power lines, power switches), the acting
roles and the processes executed in the system etc.

Knowledge thus consists of static knowledge (e.g., about
software state machines) and dynamic knowledge (e.g., mem-
ory usage, running applications). The knowledge graph can
be dynamically extended by adding entities and relations
from all required domains (e.g., power system, weather, social
context). Stored knowledge is domain dependent; new use
cases likely require to add new knowledge from other domains.

REQREQ REQREQ
250MB

REQ
60MB

App A
v1.0.0

REPLACESApp A
v1.1.0

REQREQ REQ
20MB

REQ
20MB

App B
v2.1.3

Memory CPU
ARMv8

CPU
i386

IMPLEMENTS

iSSN SMOSGi SM

PROV
500MB PROVPROV PROVPROV

1GB

Device X

PROV
10MBPROVPROV PROV

123MB

Device Y
Device
Type

2

Device
Type

1

RUNS_ON

SW-
Instance

SW
Lifecycle

State
"un-

installed"

State
"installing"

State
"installed"

Bug
#31415

Sensor
XBC334

Temp.
Sensor

Disk
Space

Oil Trans-
former

State
"starting"

State
"running"

sw:Environment ict:Ressource

ict:Ressource

sw:Instance

grid:Ressource

sw:Software issn:App osgi:Bundle

sw:Bug

hw:Instance

hw:DeviceClass

Fig. 5. Subset of a knowledge graph stored in the KBSM-KS

Nevertheless, if use cases share common sub-domains (e.g.,
weather, ICT) existing knowledge can be reused.

Figure 5 shows a subset of a knowledge graph as stored
in the KBSM-KS. In order to derive knowledge from the
collected data, a reasoning mechanism was tested. A basic
reasoner using the Cypher query language [12] was imple-
mented to evaluate intermediate steps in the process and to
integrate complex rules to derive relationships. By utilizing
this data preparation, questions occurring during planning
can be answered. However, since this cannot be handled
independently from the context, the concrete domain has to be
taken into account. One of the basic questions to be answered
during a rollout planning process is:

“On which devices in my system is the software Y
installable/startable/ runnable?”

A generic solution for this question is to make the query
dependent on the underlying software management system
(SMS) itself. This approach is based on the assumption that
there are certain states that all software management lifecycles
have in common (cf. Figure 1), including an initial state (S0)
in which the software is not available on the device and a final
state in which the software is running in accordance with all
requirements (Sn). The path through individual sub-states (Si

with 0 < i < n) from the initial state S0 to the final (running)
state Sn depends on the specific SMS (e.g., there are systems
that distinguish between installation and start, and systems
that combine these tasks in one). The question can thus to
be transformed to the following set of tasks and questions:

1) Find the definition of the SMS that manages software
Y.

2) In the definition of the SMS find the initial state S0.
3) Find the path S0 → S1 → . . . → Si → Si+1 → . . . →

Sn which the software has to pass through until it is in
the running state Sn.

4) Find all conditions Ci to pass from state Si to Si + 1.
5) Derive whether all conditions Ci be fulfilled for a given

combination of software Y and device Dx.
The set of devices for which the final question can be

positively answered is the set to which the software is regarded
to be installable.

E. Resiliency Analysis

The Resiliency Analysis component (KBSM-RA) uses the
stored knowledge about the interactions, roles and processes
to derive new knowledge about mis-use cases; i.e., it derives
what can go wrong in a system and which actors (human
and/or device) might act malicious. Figure 6 shows the steps
that such a system has to take to derive new knowledge.
As input the process needs a model that contains all system
components, their interactions as well as all actors and their
interactions with the system’s components. Then a control
loop graph is derived from this model (depicted in the center
of Figure 6) which in turn is the basis for an analysis to
derive information on faults, errors and malicious attacks in
the system (depicted on the right side of Figure 6). The
derived knowledge is stored back into the KBSM-KS to be
used for planning and for monitoring the plan execution. This
knowledge can then be used in planning to avoid faults and
errors, and to prevent situations in which malicious attacks
are more likely. The KBSM itself has to adhere to all required
security requirements to avoid opening a backdoor into the
CPS via the software management. This includes secured
communication, authentication and authorization of services
and users. In a further step the KBSM-RA could include itself
into the analysis process to find vulnerabilities in the overall
system including the KBSM.

F. Assisted Planning

The Assisted Planning (KBSM-AP) uses stored knowledge
to derive a plan of sub-states the system should transition
through to create a new system state that is defined by a human
operator (e.g., “applications affected by bug #31415 shall be
replaced by a newer version”, cf. Figure 5). For example, an
algorithm generates an optimized plan to roll out new software
whereby the impact on the voltage level in the system is kept
in predefined limits and the time for the rollout is minimized.

iSSN

Central Control

BEMSiSSN

Central Control

Secondary Substation
iSSN

Grid
Watchdog

Controller

Household
BEMS

Household
BEMS

Charging Station
EMS

Grid Watchdog

alert (no control)

curtail

tap up/down

Voltage Control

set parameters

PV Inverter
Controller

Central Control

measurementsmeasurements Sensors

Power GridOn Load Tap
Changer PV Inverter

Reactive Power Control

Voltage Control at Substation

inappropriate, ineffective
or missing control action

inappropriate, ineffective or missing control action

Human
error

incorrect or no
information provided,
delayes

Grid Watchdog

Process Model
inconsistent,
incomplete or

incorrect

inappropriate, ineffective
or missing control action

inappropriate, ineffective
or missing control action

inappropriate, ineffective
or missing control action

Voltage Control

inadequate
control algorithm

delayed
operation

On Load Tap Changer

inadequate operation

feedback delays,
measurement inaccurancies,
incorrect or no information provided

Power Grid

component failures,
 change over time

delayed operation,
conflicting control actions

BEMS

inadequate operation

feedback delays, inadequate or missing feedback

feedback delays, inadequate or missing feedback Sensors

inadequate operation

process output
contributes to
system hazard

unidentified or out of
range disturbance

Fig. 6. Example on how a KBSM-RA component can derive new knowledge about the possible errors and failures in the system based on the knowledge
about the smart grid topology and an interaction analysis using Systems Theoretic Process Analysis (STPA [13]).

A resilient rollout planning uses knowledge about the topol-
ogy of the electrical grid to optimize the rollout of a new
software version. A generic approach includes properties of
the used devices, the ICT infrastructure etc. to provide answers
to a wide range of questions for guidance of the operator
through the planning process. As a start of such a process
the operator needs to know, which parts of the system can
(e.g., due to new available software functionality) or should
be modified (e.g., due to existing bugs, mis-configurations, or
threats). This includes proposals for adapting the structure of
the CPS to minimize effects of the rollout which thus needs
to include the rollout’s timing aspects. The resilient rollout
planning answers the question which parts can be updated in
parallel and which have to be executed sequentially. The set
of further questions this system has to answer include:

• Can an application be installed on a given device?
• Which components should be updated first (e.g., based

on threats)?
• What are the time and resource limits from transferring

software to a device?
• What are the operational conditions/restrictions under

which parts of the functionality can be temporarily de-

activated? As examples, updates of photovoltaic inverters
should be issued when the sun is currently not shining; e-
car charging points should preferably be updated outside
of the usual highly frequented time periods.

G. Rollout Planning

The main component of the KBSM is the rollout plan,
generated either automatically or semi-automatically by the
KBSM-AP (i.e., a user creates the plan with the help of
knowledge provided by the KBSM-KS) or manually by an
operator using a graphical user interface (Figure 7). The user
interface connects to the KBSM-PS to retrieve and display the
rollout plans and commits manual changes to the KBSM-PS.
Rollout plans can be also generated by external components
which add the plans to the KBSM-PS; the UI can also be used
to review and manually modify the results of these planning
modules (Figure 7). Once a plan is selected in the presented
UI, its execution by KBSM-E can be triggered by the user.
The KBSM-E then reports back the state of the conditions
and actions, which are displayed to the user.

The resilient rollout scheduling algorithm presented by de
Medeiros et al. [14] (cf. Figure 8) calculates a minimum-time
secure rollout plan for software updates for controllable power

Fig. 7. Plan Editor. Steps can be added, modified or removed by adding actions and conditions and by logically connecting the pre-, runtime-, and post-
conditions.

loads. It results in a sequence of device identifier sets. The
software on the nodes in one set can be updated in parallel
without violating the given conditions (i.e., time and voltage
stability). In case the nodes that should be updated are indexed,
the result can be represented as an array of index arrays. For
example, an array [[5, 6, 7], [1, 2, 3], [4, 8]] would represent a
sequence of updates where:

1) Nodes 5, 6 and 7 can be updated together.
2) Nodes 1, 2 and 3 can be updated together, but only when

nodes 5, 6 and 7 were updated successfully.
3) Nodes 4 and 8 can be updated together, but only when

nodes 1, 2 and 3 were updated successfully.
The sequences that result from the algorithm can be directly
mapped to rollout plans that can be executed using KBSM-E.

H. Summary of rollout process steps

In summary, an inter-domain rollout process consists of the
following steps:

1) Describe static knowledge about the system, its compo-
nents, its stakeholders and all known (mis-)use cases.

2) Define standardized sets of failure- and attack-scenarios
that can occur during software rollout.

3) Monitor the system to update knowledge about dynamic
properties.

4) Add new software and information about the software
to the system.

5) Deduce knowledge about security issues, possible fail-
ures, and possible mis-use cases.

6) Plan the rollout using the (domain-specific) system
knowledge:

a) Define the goal of the rollout.
b) Deduce all constraints (from different domains).
c) Minimize risks and interferences with normal oper-

ation (inform the user about non-resolvable risks).

d) Derive safe-points (i.e., safe and secure intermedi-
ate steps).

e) Include rollback scenarios to safe-points in case a
constraint is violated.

7) Evaluate dynamic properties of the planned campaign
by using a digital twin (simulation); e.g., execute stan-
dardized sets of failure- and attack-scenarios.

8) Rate results and report possible incidents to user.
9) Execute the rollout plan using domain-specific Monitor-

ing and Action Services.
10) Perform rollback to a safe-point in case of a constraint

violation.

V. EVALUATION

To evaluate the effect of a rollout plan resulting from the
described planning process, the plan could be executed in a
virtual environment in which a simulated CPS replaces the real
one. This component mirrors the functional requirements of
the KBSM-E component with the exception that the simulation
environment has to be controlled by the evaluation component
too. The KBSM – built on top of existing SMS – was
integrated with the generic application lifecycle management
framework [9] as well as the OSGi-based deployment frame-
work [6]. Software rollout commands are issued to those
frameworks, that in turn interact with the iSSN and the BEMS
field devices. In the investigated use cases the rolled out
software is responsible for the power management to stabilize
the voltage levels in the power grid controlled by the iSSN as
well as the control of parameters of the photovoltaic inverters
in the households controlled by the BEMS. The setup was
implemented and tested using a Mosaik-based co-simulation
[15], [16] as well as in a hardware-in-the-loop lab testbed.

All domain conditions (e.g. voltage levels) and timeouts
were correctly detected and the system acted as expected.

Fig. 8. Generated rollout plan based on the execution sequence derived for the resilient rollout algorithm

Depending on the use-case the implementation of the mon-
itoring and action services turns out to be an extensive effort.
However, the system can be dynamically updated during
runtime by registering new services, s.t. one can start with
the functionality of the underlying SMSs and interactively
add new functionality. Even with the support of a graphical
interface for the construction of rollout plans, the integration
of conditions in these plans for a large CPS is a complex task
which should be simplified. One solution could be the usage
of domain specific languages (DSL) to describe conditions in
a generic way for a given situation to be reused.

VI. CONCLUSION

The presented KBSM introduces an additional layer on top
of existing domain-specific rollout processes as evaluated in
previous work [6]. It provides the ability to control those
processes by utilizing information about aspects of the CPS
which the domain specific software-centered process cannot
cover themselves. It further provides means to make the rollout
processes dependent on all observable sub-system states of the
CPS to be controlled. Covering all those dependencies on all
levels from physical to logical level in detail is a challenging
task requiring a depth of knowledge about the complex system.
In addition to the monitoring capabilities that the KBSM
provides, it becomes possible to adapt the state of the CPS
so that negative consequences of the software rollout in the
CPS can be reduced. Not only the process of rolling out the
software was examined, but also the design of the software
components to be rolled out.

The KBSM framework was tested with two underlying
systems: an OSGi deployment process [6] as well as the iSSN
application lifecycle management [9] to rollout software in
smart grid use cases. The pursued generic approaches allowed
to deliver not only domain specific processes for solving
specific problems in the smart grid domain, but also to design
and implement a prototype of a system that can be used
to resiliently deploy software in any CPS. The knowledge-
based approach is currently constrained with respect to the
system’s dynamic properties. However, in combination with
other modeling approaches and the usage of a digital twin
to test the software rollout plan against predefined scenarios,
it is expected that the presented approach covers a level that
increases the dependability of the system during and after the
software rollout in comparison to the current state-of-the-art.

REFERENCES

[1] X. Yu and Y. Xue, “Smart Grids: A Cyber-Physical Systems Perspec-
tive,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, May
2016.

[2] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, and A. S. Uluagac, “A
survey on smart grid cyber-physical system testbeds,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 1, pp. 446–464, 2016.

[3] M. A. Razzaq, S. H. Gill, M. A. Qureshi, and S. Ullah, “Security Issues
in the Internet of Things (IoT): A Comprehensive Study,” International
Journal of Advanced Computer Science and Applications, vol. 8, no. 6,
2017.

[4] G. Dileep, “A survey on smart grid technologies and applications,”
Renewable Energy, vol. 146, pp. 2589–2625, 2020.

[5] E. Piatkowska, C. Gavriluta, P. Smith, and F. P. Andrén, “Online Rea-
soning about the Root Causes of Software Rollout Failures in the Smart
Grid,” in 2020 IEEE International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids (SmartGridComm),
2020, pp. 1–7.

[6] S. Cejka, F. Kintzler, L. Müllner, F. Knorr, M. Mittelsdorf, and J. Schu-
mann, “Application Lifecycle Management for Industrial IoT Devices in
Smart Grid Use Cases,” in 5th International Conference on Internet of
Things, Big Data and Security, IoTBDS 2020, Prague, Czech Republic,
2020, 2020, pp. 257–266.

[7] M. Faschang, S. Cejka, M. Stefan, A. Frischenschlager, A. Einfalt,
K. Diwold, F. Pröstl Andrén, T. Strasser, and F. Kupzog, “Provisioning,
deployment, and operation of smart grid applications on substation
level,” Computer Science - Research and Development, vol. 32, no. 1,
pp. 117–130, 2017.

[8] F. Kintzler, T. Gawron-Deutsch, S. Cejka, J. Schulte, M. Uslar, E. Veith,
E. Piatkowska, P. Smith, F. Kupzog, H. Sandberg, M. Chong, D. Um-
sonst, and M. Mittelsdorf, “Large Scale Rollout of Smart Grid Services,”
in 2018 Global Internet of Things Summit, 2018.

[9] T. Gawron-Deutsch, K. Diwold, S. Cejka, M. Matschnig, and A. Einfalt,
“Industrial IoT für Smart Grid-Anwendungen im Feld,” e & i Elek-
trotechnik und Informationstechnik, vol. 135, no. 3, pp. 256–263, 6 2018.

[10] J. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of
distributed software systems: Definitions and state of the art,” Journal
of Systems and Software, vol. 103, pp. 198–218, 2015.

[11] A. Cervin, “Improved scheduling of control tasks,” in Proceedings of
11th Euromicro Conference on Real-Time Systems. Euromicro RTS’99,
1999, pp. 4–10.

[12] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An Evolving Query Language for Property Graphs,” in Pro-
ceedings of the 2018 International Conference on Management of Data,
ser. SIGMOD ’18, 2018, pp. 1433—-1445.

[13] P. Smith, E. Widl, F. P. Andren, T. Strasser, and E. Piatkowska, “Towards
a Systematic Approach for Smart Grid Hazard Analysis and Experiment
Specification,” in 18th IEEE International Conference on Industrial
Informatics (INDIN 2020), 2020, pp. 333–339.

[14] M. G. de Medeiros, K. C. Sou, and H. Sandberg, “Minimum-time Secure
Rollout of Software Updates for Controllable Power Loads,” Electric
Power Systems Research, vol. 189, p. 106797, 2020.

[15] F. Schloegl, S. Rohjans, S. Lehnhoff, J. Velasquez, C. Steinbrink,
and P. Palensky, “Towards a classification scheme for co-simulation
approaches in energy systems,” in 2015 International Symposium on
Smart Electric Distribution Systems and Technologies, Sep. 2015, pp.
516–521.

[16] C. Steinbrink, M. Blank-Babazadeh, A. El-Ama, S. Holly, B. Lüers,
M. Nebel-Wenner, R. P. Ramirez Acosta, T. Raub, J. S. Schwarz,
S. Stark, A. Nieße, and S. Lehnhoff, “CPES Testing with mosaik: Co-
Simulation Planning, Execution and Analysis,” Applied Sciences, vol. 9,
no. 5, 2019.

