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Introduction
It is of utmost importance to provide mechanisms for the installation or update

of software on devices in the field. This requirement is further increased since the

transition to the Internet of Things (IoT) introduces a high number of affected

field devices that are required to be maintained. Our previous projects in the Smart

Grid and Smart Building domain led to the requirement for a device and application

management mechanism [1–3]. Important components in the affected parts of the

electric power grid are the secondary substations located on the borders between the

medium and the low voltage grid to connect local commercial and residential users to

the power grid. The transition from the traditional grid to the Smart Grid includes

equipping those traditionally passively operated isolated secondary substations with

improved computational power and communication abilities, easing interaction with

them and reducing maintenance efforts and costs (intelligent secondary substation

– iSSN). Within the LarGo! project, we are investigating processes for the large

scale rollout of software applications for energy and grid management [4]. The vast

number of application modules, as well as the high number of substations a distri-

bution system operator (DSO) has to maintain requires to issue typical application

lifecycle management tasks from the remote site without staff required on-site.

Requirements and Tasks
The main requirements for the iSSN’s application lifecycle management are:

R1 Scalable device management by a central control center

R2 Automatic deployment of software components to the devices

R3 Modular system to easily compose required features on demand

R4 Module dependency management

R5 Automatic updates and configuration

The system’s architecture is expected to consist of the DSO’s central backend

and control system, responsible for the management of the field devices’ software

components. Many target devices are controlled by this backend system; they are

connected with the backend by a communication channel on which messages and

artifacts are exchanged. Target systems allow for modular applications, thus the

number of concurrently executed applications may be high [2]. Listed application

lifecycle tasks [1] are issued on this backend system:

T1 Installation of a software module

T2 Start of this software module

T3 Stop of this software module
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T4 Uninstallation of this software module

T5 Update of this (possibly running) software module

T6 Configuration of this (possibly running) software module

T7 Information on the current state of the software modules (e.g., health check)

A resulting simplified application lifecycle graph is shown in Figure 1. Note that,

T5 basically is a sequence of stopping and uninstalling the old version, and installing

and starting the new version (T3-T4-T1-T2, if the module is currently running, or

T4-T1, if not) with the old persistent state reused, in contrast to T6 which should

not require a restart. Transitions to a failed state could occur at any task; they are

left out in the figure for simplicity reasons.

Figure 1 A simplified application lifecycle graph

State-of-the-art Evaluation and Implementation
The implementation of applications can differ depending on the use case (e.g., OSGi

modules, Docker containers). As there exist no domain-specific solutions for soft-

ware management, existing IoT solutions (Apache ACE[1], Apache Felix[2], Apache

Karaf[3], balena[4], Eclipse hawkBit[5], Eclipse Virgo[6], Gridlink Application Frame-

work Provisioning [1], SWUpdate[7], and cloud-provider solutions, such as AWS IoT

Greengrass[8], and Azure IoT Edge[9]) were evaluated regarding the listed require-

ments and tasks. While the list is not exhaustive, it provides a good overview over

the spectrum of currently available solutions. However, not all requirements and

tasks can be fulfilled by the frameworks in evaluation: Most of the frameworks have

only limited support of deployable components’ types or they do not allow a central

management of multiple devices. Furthermore, most of the frameworks show only

limited support for the expected lifecycle tasks: an installation task usually already

includes the start of the module, and modules cannot be stopped once running.

In result, the support for some of the defined main lifecycle tasks is limited. Thus,

special challenges in the domain of Smart Grid application rollouts require a tai-

lored solution. The architecture of a generic implementation for application lifecycle

management in Industrial IoT (IIoT) use cases [3] is shown in Figure 2, including an

optional App Store. In contrast to consumer IoT solutions, in IIoT use cases it needs

[1]https://ace.apache.org/
[2]https://felix.apache.org/
[3]https://karaf.apache.org/
[4]https://www.balena.io/
[5]https://www.eclipse.org/hawkbit/
[6]https://www.eclipse.org/virgo/
[7]https://github.com/sbabic/swupdate/
[8]https://aws.amazon.com/greengrass/
[9]https://azure.microsoft.com/services/iot-edge/
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to be necessarily avoided that external systems have any access to field devices, es-

pecially since the App Store may not be within the sphere of the operator. Thus,

purchased applications are first downloaded by the Application Lifecycle Manage-

ment Service (ALMS) to the Local Application Repository, all situated within the

operator’s backend. The operator manages the several field devices by use of an

User Interface (UI) on the backend side; there the enumerated application lifecycle

tasks are issued. They are communicated to the Application Lifecycle Management

Agent (ALMA) on the device, which executes specific shell scripts based on the file

type and the task (Table 1). Those shell scripts can be implemented for any file

type, thus the implementation shows to be very flexible and extendable.

Figure 2 Generic Application Lifecycle Management Implementation

Docker containers Docker container compositions
Task Shell scripts docker-©.sh compose-©.sh

install (T1) 5-install.sh
docker image load
docker container create

docker-compose up --no-start

start (T2) 5-start.sh docker container start docker-compose start

stopp (T3) 5-stop.sh docker container stop docker-compose stop

uninstall (T4) 5-uninstall.sh
docker container rm
docker image rm

docker-compose down

Table 1 ALMA calls shell scripts named 5-©.sh (5: file type, ©: task; e.g., docker-install.sh).
Simplifications of the steps called by the according shell scripts are shown for Docker containers, and
for compositions of multiple Docker containers.

For the main app-lifecycle tasks (T1–T4) – ?: install, start, stop, uninstall – the

following five steps are executed:

1 The operator initiates the ? task of an app using the UI on the backend site.

2 ALMS informs ALMA to ? the app. Further steps may be executed by the

ALMA; for example, for T1, ALMA downloads the app, and extracts it.

3 ALMA runs the use-case specific configured ? shell script (cf. Table 1).

4 ALMA replies to the ALMS with a message indicating success or failure. In

cases of failures, the failed state is entered.

5 The result of the ? process is shown in the UI to the operator; for example,

after T1, the app it is added to the list of installed apps.

Conclusion and Outlook
We enumerated several requirements and tasks an application lifecycle management

in the Smart Grid domain needs to fulfill. Unfortunately, an evaluation of suitable-

seeming customer-grade IoT tools showed to be not applicable for this purpose due
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to not implementing all of the desired functions. We thus introduced a solution

for the iSSN’s application lifecycle management and tested it successfully. LarGo!

furthermore includes the domain of Smart Buildings utilizing a buidling energy man-

agement system (BEMS). Work is ongoing for application lifecycle management on

the OSGi-based development of the BEMS fulfilling the listed requirements and

tasks. Management systems to roll out software to more devices cover different lev-

els and areas of dependency management. However, some dependencies go beyond

of what state-of-the-art software rollout systems support; for example, none of the

analyzed systems is able to include knowledge about the physical environment and

the functions of the software into software rollout planning and execution. We are

thus currently working on a knowledge-based software management layer, utilizing

knowledge about the grid’s setup and its components for the planning process, in-

cluding knowledge about the underlying software deployment processes themselves.
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