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Abstract—Today’s energy grids are facing huge challenges
caused by the growing diversity of energy consumers and
producers as well as an ongoing increase of renewable energy
sources and e-mobility. Hence, it is essential that the grids
continuously evolve by introducing new monitoring, protection
and optimization concepts including machine learning (ML)
approaches. To overcome the lack of existing monitoring data
for rare real-world grid events, this paper presents a concept
for generating training data sets for ML approaches based on
a multi-modal grid simulation tool. The simulation tool as well
as the proposed semi-automated data generation approach are
introduced and the concept is verified based on a real-world
battery storage maintenance event.

Index Terms—Smart grids, Simulation, Deep learning

I. INTRODUCTION

While traditional power grids are characterized by a uni-
directional energy flow from large power plants to passive
consumers, Smart Grids have to cope with bidirectional load
flows to and from intelligent ’prosumers’. Renewable energy
sources, such as photo-voltaic systems or wind farms, generate
energy in the low and medium voltage grids while on the
other hand a growing number of e-cars have a high but
hardly predictable power demand. These new players are no
longer restricted to classic electrical load flow calculations and
simple standardized load profiles, but introduce a variety of
heterogeneous influence factors ranging from weather data,
dynamic energy policies, to social aspects such as local
price optimization within energy communities. In addition, the
future grid has to operate closer to its limits to keep the level
of necessary investments within an acceptable range.

If these challenges are not addressed properly either the
transition towards modern Smart Grids is slowed down or the
security of supply is endangered. The necessity for a quick
transformation is underlined by an expected 93 % increase
in global electricity generation during the 2010-2040 period
and renewable sources to account for 24 % of total energy
generation in 2040 [1]. Moreover, to mitigate the climate crisis,
the European Union requires its member states to reach a share
of renewable energy production of 32 % already by 2030 [2],
though a further elevation of those target can be expected in
near future in connection with the Green Deal program [3].

Several traditional distribution and protection concepts be-
come inapplicable and new approaches have to be introduced.
As a result, the research regarding machine learning (ML) and

deep learning (DL) applications in the Smart Grid domain
increased drastically, e.g., a quantitative descriptive analysis
shows that 72 % of Smart Grid related ML research during
the period from 2010 to 2019 was published in the last 3 years
[4]. Especially in supervised learning, large training data sets
are required, while often a lack of high-quality training data
sets is experienced when training DL models to detect events
and anomalies in the evolving heterogeneous Smart Grids.

Grids for which measurement data is available are either
newly build or updated. Their properties are known and they
tend to be rather stable, which makes it hard to extract suffi-
cient training data sets for rare grid events. Thus, a technique is
needed to generate the data for the ML algorithms even before
state monitoring components are available in legacy grids, to
which the new functionalities shall be added. Especially events
that are unlikely but may impose a high severity are hard to be
tackled. They cannot be sufficiently tested or observed in the
real environment but may be addressable if a suitable method
models the cause of these events in simulations.

We therefore propose an approach to re-enact rare multi-
modal grid events to generate ML training data sets using
Bifrost, a heterogeneous Smart Grid simulation tool [5]. The
key contributions of this paper are:

A. To introduce Bifrost and its enhancements for re-enacting
real-world multi-modal grid events,

B. To present a method for semi-automated data generation
of realistic real-world grid events using Bifrost,

C. To verify the approach by generating a training data set
for a maintenance event at a battery storage system within
a low voltage grid section, and

D. To train a Long Short-Term Memory (LSTM) deep learn-
ing network architecture on this simulated test set, for
detecting maintenance events in real-world data.

The rest of this paper is organized as follows: After a
review of related work in section II, the simulation tool Bifrost
and the proposed data generation approach is introduced in
section III. The use case and its experimental setup is described
in section IV and the results are evaluated in section V. Finally,
conclusions and an outlook are given in section VI.

II. RELATED WORK

A. Modeling and Simulation of Smart Grids
A central question concerns the areas to be covered by a
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by current available simulation tools [6]. In fact, there are
many simulation environments [7] that are also effective in
simulating the individual aspects of a Smart Grid (power
flow simulation, demand/response, dynamic pricing, commu-
nication). However, if one wants to simulate the Smart Grid
in its multi-modal nature, current solutions do not provide
satisfactory results, as they were not developed for this mod-
ular purpose. To integrate these modular approaches there
exists research about co-simulation [8], to create interactions
between existing simulation frameworks.

B. Machine Learning/Deep Learning in Smart Grids
Regarding the application of DL in Smart Grids, most of

the trending topics are related to load/demand forecasting,
security and reliability of the grid, cyber security, power
system analysis and control, renewable energy generation
prediction and defect/fault detection of electrical equipment
[9]. While all these topics aim for different goals (e.g., cost op-
timization, outage prevention, reduction of maintenance work),
the used ML approaches are mostly based on deep Artificial
Neural Networks (e.g., Recurrent Neural Networks, LSTM
Networks, Convolutional Neural Networks, Feedforward Deep
Networks) and Support Vector Machines, which together make
up 74 % of ML methods in the Smart Grid domain [4]. These
approaches share a common need for large training data sets.

III. MULTI-MODAL SMART GRID SIMULATION

A. Bifrost Core
The co-simulation framework Bifrost1 consists of a core

simulation engine to drive dynamic data generation and a 3D
web UI for the construction of settlements. The Bifrost core
itself does not make assumptions as to the provenience of
domain data, nor produce any. It does, however, provide a
data model, which is built from a plain-text directory. This
directory, which is freely editable even during runtime, lists
syntactic (the shape of data, e.g., that a voltage consists of
3 floating-point values) and semantic (e.g., that voltage has
a unit of Volt) characteristics. Within the Bifrost data model
dynamics represent those aspects that can change (e.g., due to
user interactions as in the case of a power switch, due to un-
derlying models as in the case of houses’ power consumption,
or by an external simulation controller, cf. subsection III-C).

External modules, connected via a Representational State
Transfer - Application Programming Interface (REST API),
can subscribe to the Bifrost data model. At every simulation
loop, all registered modules are called in-order, with a payload
corresponding to their subscribed data. The modules in turn
can respond with modified, updated, or new dynamic values
that are stored in a time-series database, and can be visualized
in graphs directly on the Bifrost UI. Figure 1 shows the Bifrost
web UI design and highlights the different heterogeneous
building types. While the Bifrost core and its modules can
be fully controlled via the REST API, a graphical interaction
(play/pause, module configuration and result visualisation)
helps the user to construct and test the individual settlement.

1https://bifrost.siemens.com

B. Multi-modal Bifrost Modules
The main strength of Bifrost comes with the open interface

to nearly any kind of behaviour model (Bifrost module) and its
flexibility of allowing new and diverse characteristics (Bifrost
dynamic). While classic load flow related modules range from
standard load profiles (e.g., for residential buildings) to a load
flow solver, heterogeneous aspects can be introduced by mod-
ules such as a weather generator or controller modules (e.g.,
battery storage controller or energy community controller).
Following an overview about those modules with respect to
the multi-modal nature of Smart Grids, which were used for
the use case presented in section IV, will be given. This list
is not complete but limited to the presented work.

1) Load Flow Solver: This module covers the basic load
flow within an electrical grid. All power values generated by
other modules as well as the grid topology are analyzed and
the load flow is calculated and written back to the current
simulation step.

2) Weather Generator: This module introduces various
weather parameters into the simulation environment. It gen-
erates dynamics such as temperature, cloud coverage and
precipitation. All values can either be taken from real historic
weather data sets or can be generated based on any model.

3) Building Model: The main task of the building module is
to calculate the power consumption of residential and commer-
cial buildings. It is therefore split into sub-classes, each dealing
with a specific domain. The load class provides the base load
consumption of the building. Those values can be extracted
from standardized load profiles or specific use case related
profiles. Additional effects such as randomization or noise
overlay help to generate different and more realistic profiles.
A photo-voltaic (PV) class handles optional solar panels on
each individual building. Beside the electrical characteristics
and geographical orientation, this class uses the weather data
to calculate the PV output. In addition, an e-mobility (EV)
class simulates the charging of an e-car based on information
about the charging pole, e-car and some parameterizable
characteristics. Additional features like local battery storage,
or heating pumps can be added.

4) Battery Model: This module simulates large battery
storage systems, which are not part of a building but directly
connected to the grid and controlled by global or commu-
nal instances. Possible applications could be the provision
of (primary) control energy, local overload prevention or
optimization of energy communities. The module therefore
simulates a realistic behaviour of configurable batteries (e.g.,
by adding features such as aging and self discharge) and
provides an interface for other modules, which can control
the battery by sending charging and discharging commands.

5) Battery Controller: This module is responsible for
adding any kind of battery controlling strategy. Implemented
algorithms include, for example, a peak-shaving method,
which uses the battery to prevent local transformer overloads
during the daily peak times. The main functionality used for
the presented work is to re-enact a maintenance event at the
battery. This event is described in detail in section IV.

https://bifrost.siemens.com


Fig. 1. Bifrost web UI with its heterogeneous building types and an exemplary module interface

6) Time Controller: Although the Bifrost core handles the
simulation time and step size, the additional Time Controller
module is needed to manipulate the simulation time in Bifrost
to target specific timestamps. This is necessary in case certain
parameter settings are influenced by the current simulation
date and time (e.g., weather).

For future extension of the use case described in section IV
the following modules are currently being implemented:

• Energy community controller: To model local energy
communities.

• Power plant modules: To model wind farms or emergency
backups like gas turbines.

• Inclusion of the energy price market: To model the
dependency between consumption and the energy market.

• Public charging slots: To model the charging behaviours
of e-car users at public charging slots.

• Augmented Bifrost Reality: To connect real-world sen-
sors to Bifrost (e.g., for real-time co-simulation)

C. Semi-Automated data generation

We propose to use a multi-modal simulation tool such as
Bifrost to create training data sets for rare multi-modal real-
world grid events as a means to generate large and high-
quality data sets, which are crucial for the success of many
ML approaches. The approach proposed can be split into four
steps, which will be introduced and described in the following:

1) Event Identification: Prior to every simulation run, the
event under investigation has to be identified and analysed.
This step typically involves domain experts such as grid
operators and stakeholders. Once an event is identified (e.g.,
grid endangering weather behaviour), it has to be analysed
and translated into the simulation world. Bifrost modules to
re-enact a real-world event can be created in two ways:

• Recreating the event as a time series: If the event can
be characterized by any kind of time series (e.g., specific

load profile or weather period), a Bifrost module can be
used to replay this time series. Additional randomization
or noise overlay can help to improve the quality of the
resulting training sets.

• Recreating the cause of the event: If possible, instead of
the event itself, the underlying cause of the event should
be modeled and implemented as a Bifrost module. Thus
e.g., for a battery maintenance event the controller of the
battery can be modeled instead of modeling the resulting
time series. Using this approach, modeling can also be
done even before any real-world event was recorded.
Thereby specific behavior models (e.g., physical model)
or abstract model approaches can be used.

2) Bifrost Settlement Setup: In a second step a simulation
environment is specified by building a settlement that contains
the grid topology with different types of buildings and inte-
grates the needed Bifrost modules (see subsection III-B). This
settlement should mirror the real-world situation, in which the
event under investigation can occur. It is worth noting, that
the setup can be iteratively optimized based on the extracted
training sets and their verification.

3) Semi-automated Simulation Runs: After a settlement
was specified, a single simulation run can be started and
stopped via the Bifrost frontend. However, using the semi-
automated simulation control tool, all simulation parameters
and the event scheduler can be adapted between multiple
Bifrost simulations, which are started and stopped automat-
ically. This process is visualized in Figure 2.

First, the entry point of the simulation has to be set accord-
ing to the first two steps. This includes the settlement design
and constant module parameters such as the start timestamp,
simulation step resolution, chosen power profiles, as well as
specific module parameters (e.g., capacity and charging power
of battery storage). Next the parameter sets and an event
scheduler for the event under investigation have to be defined:
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Fig. 2. Semi-automated data generation concept

• Parameter sets: This includes all parameters and corre-
sponding ranges, which should be varied between the
automated simulation runs. As Bifrost itself makes no
assumptions about the module’s purpose and function, a
huge variety of modules and therefore possible parameter
sets allow for diverse and realistic simulation results. For
example, this could include a list of building power pro-
files, which should be replaced in every single simulation
run. This would result in multiple runs with a different
base load.

• Event scheduler: The event under investigation has to be
triggered multiple times during the simulation run. De-
pending on the event and its nature, this could either be a
simple schedule, which calls the event to given and maybe
randomized timestamps, or a more complex model- or
data-based sequence. As for all Bifrost modules, the event
module designed in the prior steps can be triggered via
a REST call.

After all parameters and schedules are set, the semi-
automated Bifrost controller takes this information as input
and generates a timed sequence of commands and REST calls,
which are then automatically sent to the Bifrost core and
any included module. Without further human input, multiple
simulation runs are started, stopped and the resulting data sets
are stored.

4) Training Data Extraction: After the automated simu-
lation runs, the training data sets have to be extracted from
the simulation results. Bifrost’s data crawler module stores all
simulation data (Bifrost dynamics) in an time-series database.
The data extraction is then responsible for automatically
collecting the data sets of the different simulation runs and
storing them for later training of ML applications. In addition
the following data processing steps are applied:

• Data post-processing: The simulation data is optimized
for the target ML architecture. This includes, for example,
manipulating the data and time resolution as well as data
filtering (e.g., normalization).

• Labeling: Using the information from the Bifrost mod-
ules and the proposed controller enables automated data
labeling. The event under investigation as well as other
information (e.g., weather related events) are labeled and
stored together with the data sets.

The resulting data sets can now be used according to the
defined use case and ML approach. If possible, the quality
of the simulation data should be verified by applying the

targeted approach on historic real-world data. Experiences
from such real-world tests can help to improve the training
data set quality be redefining the simulation parameters and
rerunning the semi-automated data generation. To illustrate
the proposed data generation as well as to verify the overall
concept, section IV now shows the results for a battery storage
maintenance use case.

IV. BATTERY STORAGE USE CASES

In modern power grids an increasing number of parties
are producer and consumer at the same time. These so-
called prosumers are not restricted to a classic standard profile
anymore and therefore represent a potential risk for the grid
operation, especially when it comes to grid stability. Typical
examples of these prosumers include PV systems, e-mobility
charging stations or wind turbines.

As can be assumed from the above examples, in some cases
it is a matter of coincidence if, when, and how the energy is
distributed through the different grid segments. One measure
to reduce potential local load peaks or over-production of
energy is the use of battery storage systems. These can actively
contribute to dampen the instabilities which are generated
by the prosumers. Such battery storage systems are already
part of modern real-world Smart Grid concepts, but there are
still essential research gaps with regard to the analysis and
detection of fault cases.

A. Exploratory Analysis

The available historical time series of the grid values
were recorded over a period of several years using the grid
monitoring devices installed at the Aspern2 testbed in Vienna,
Austria. For the presented use case, time series from a single
distribution substation, supported by a battery system, from
2018 with a given sample rate of 2.5 min are considered. The
underlying battery system is configured to limit grid peaks
per phase to 60 kW. From the initial analysis of the power
consumption data, it is observable that there are states in the
system that do not represent the desired/designed behaviour.
Figure 3 shows the following observed day-profiles:

• Battery maintenance event,
• Peak-shaving inactive over the whole day,
• Peak-shaving partly active over the day,
• Peak-shaving active for the whole day,

whereas the first three are considered as anomalous profiles.

B. Day-profile Clustering

As illustrated in Figure 3, one can classify the historical
time series into a certain number of day-profiles. To acquire the
number of different classes and their appearance frequency, an
unsupervised day-profile clustering concept was implemented,
which is divided into three major steps:

• Feature extraction (spatial, temporal and statistical do-
main) of the time series of one day.

2https://www.ascr.at
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Fig. 3. Consumption day profiles of the investigated transformer

• Unsupervised (k-means) clustering in the corresponding
feature space of the different days.

• Extracting the information about the frequency of the
different day profiles.

After applying this approach on the historic time series, four
different classes are identified. Table I shows the profiles and
their occurrence in percent.

day-
profile

maintenance
event

no peak-
shav.

partly
peakshav.

whole day
peakshav.

appearance 1% 17% 68% 14%

TABLE I
RESULTS DAY PROFILE CLUSTERING

Depending on the use case and ML algorithm, the classifi-
cation of the time series is helpful for ML training. However,
the clustering also provides the information that the class
“maintenance event” only occurs with 1% in this data set. To
train neural networks to recognize this event in the real-world
data online, significantly more training samples are required.

C. Battery Maintenance Event
This event is caused by a local maintenance work at the

battery storage, which is not reported to central control. The
battery is completely discharged and charged. This operation
is often accompanied by an update of the battery controller,
which changes the system properties. Thus, the detection of
these events is of importance to the grid operator.

In order to reproduce the event in our multi-modal simula-
tion, the information about the root cause and the connected
parameters must be known first. In this case, the event is
manually triggered on site. So time and date are random in
this situation. The duration of the maintenance event depends
on the storage size of the battery and the maximum charging
and discharging power. These parameters are now specifically
manipulated in the simulation, see V-A.

V. RESULTS

A. Generated Training Data
The approach presented in subsection III-C is now used

to simulate training data for the battery storage use case

(section IV), especially to generate time series for identifying
the battery maintenance event in the historic data. For this
the used Bifrost settlement is designed to behave in a similar
way like the testbed Aspern2, and in order to create a diverse
training set the parameters of the Building Model, Battery
Module and Battery Controller (e.g. load profiles, event start
time, charging/discharging power of the battery, see subsec-
tion III-B) are modified between simulation runs.

Figure 4 illustrates the created/simulated normalized train-
ing data p1, where the battery maintenance event is at least
triggered once per day. The lower part of this figure con-
tains two example day profiles. The corresponding labels are
automatically extracted from the simulation and mark the
discharging and charging period of the battery.
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Fig. 4. Simulated data set

B. Neural Network Architecture

When it comes to analyzing/classifying time series, LSTM
networks are frequently used [10]. Their ability to learn
patterns in a sequence seems almost perfect for this battery
maintenance use case. In this application the Keras frame-
work3 and its LSTM implementation is used. Table II lists the
implemented layers as well as those parameters, that differ
from the standard implementation. Additionally a dropout
layer (dropout rate of 0.1) is inserted between the individual
layers in order to avoid over fitting.

layer L1: LSTM L2: LSTM L3: Dense
parameter units = 264

rec.act. = “tanh”
units = 64
rec.act. = “tanh”

act. = “tanh”

TABLE II
NEURAL NETWORK ARCHITECTURE

The network is trained with a sequence length of 25 (which
corresponds to approx. 1 hour with a sampling rate of 2.5
minutes). The input to the network is defined as
Xtrain = [p1, ṗ1, sin(ωt)] ∈ R25×3, where p1 is the normal-
ized (zero mean, unit standard deviation) time series of the
power consumption and ṗ1 its derivative. To let the network
also recognize/learn relative temporal relationships, the third
feature vector consists of the relative time sin(ωt), where
ω = 2π

24·60·60
rad
s .

3https://github.com/keras-team/keras

https://github.com/keras-team/keras


C. Event Classification

After training the previously presented LSTM network with
30 epochs and a batch size of 200 samples, we achieve a
training accuracy of 98%. The network is therefore capable
of detecting the event in the simulated data. However, more
interesting are the results on the real grid data. Figure 5 shows
the prediction of the network on the real grid time series of
2018 (with a recording gap due to malfunctioning sensors
during autumn). The goal of this real time event detection
is to recognize behaviours which are similar to the battery
maintenance event sequence. Considering the result of the day
profile clustering (battery maintenance event appears 4 times)
as the ground truth we result in a validation accuracy of 80%.
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Fig. 5. Overall battery maintenance event classification

Figure 6 illustrates four detailed day profiles and their
battery maintenance event prediction. Apparently in all four
cases anomalous behavior is prevalent and the battery can
be the reason for this behavior. However, the main attention
should be drawn to the two day profiles on the right hand side
of the figure. In 2018-04-10 the maintenance event is detected
in addition to two other anomalies. In 2018-11-23 the event is
carried out twice in a row and is detected on both occasions.
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Fig. 6. Daily based battery maintenance event classification

VI. CONCLUSION AND OUTLOOK

We demonstrated a novel concept for re-enacting rare multi-
modal real world grid events to generate training data sets for
ML algorithms. The approach is based on the heterogeneous
simulation tool Bifrost as well as a semi-automated simulation

controller. The approach was verified by re-enacting a battery
maintenance event within a low voltage grid section. The
results show that it is possible to generate suitable training data
sets for this event and to use them to train a LSTM network
architecture, which is able to detect the maintenance event
within real world data from a Smart Grid testbed.

The main challenges lie in the semi-automated simulation
configuration as well as the parametrization with respect to the
ML algorithm since the simulation configuration is of great
importance for the quality of the results. Although the used
modules already provide a heterogeneous and realistic envi-
ronment for many use cases, domain experts and knowledge
have to be included into the configuration process for the event
under investigation.

To overcome these limitations, we are currently working
on new approaches on event and outlier detection without a-
priori knowledge about events. For example, the concept can
be adapted to create training data sets which are then used to
compare real world data streams with a predicted one based on
the training data. Furthermore, the addition of real controller
hardware could also be used to improve the parameter tuning
for real world components (e.g., control strategy).
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