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Abstract—We present a Java-based embedded data store
for edge-to-cloud storage optimized for Smart Grid time-series
measurements. The key performance indicators expected of ap-
plications and operators of a Smart Grid monitoring and control
system - frequent readouts, immutability, statistical indicators -
are optimally supported. Furthermore, the data store is tailored
for operation on platforms with limited storage and processing
resources. We show that our implementation is superior to state
of the art and off-the-shelf solutions in data retrieval time and
needed storage size.

I. INTRODUCTION

One of the key benefits of the Smart Grid vision for the
low voltage grid is the availability of measurement data. While
remote reading of billing information accelerates business
processes and creates customer value, operative applications
working on an unprecedented base of data from a previously
”dark” grid area provide immense benefits for utilities: grids
can be operated much closer to capacity; brownout and black-
out situations can be predictively mitigated, and equipment
maintenance scheduled in a timely manner. The performance
of different architectures for data processing have been evalu-
ated in [1] in comparing key cost indicators such as energy
consumption, processing, communication and storage costs.
Operative applications – e.g., voltage control algorithms[2],
state estimators[3] or equipment monitoring software – can
generally be hooked into the Smart Grid data stream according
to one of two architectural philosophies:

1) In the sensor-to-cloud (2-tier) approach, all data from
distributed sensor nodes are cleared to the cloud
and processed remotely. A centralized architecture[1]
concentrates data processing and storage on a
central facility in the system. In a decentralized
architecture[1] the load is distributed in the system
to localized management platforms. State estimation
and voltage control applications based on a 2-tier
architecture were investigated in [4].

2) In the fog-/edge computing (3-tier) approach, an
additional middleware layer pre-processes the data
before transferring them to the cloud, thus creating
a hybrid architecture approach[1] implemented in
several demonstration projects like [2], [3] or [5].

While the 2-tier approach generally provides the benefits
of unlimited storage and computing resources, its drawbacks
are manifold:

• Reliable data connections have to exist for every
sensor node

• Data transfer latency can be a prohibitive factor in
operation-critical control applications

• The backend network could be spammed with data
sampled at resolutions irrelevant for the actual appli-
cations

• High traffic on a multitude of connections increases
the probability of malicious interference

• It might be prohibited to transfer certain data to
a geographically non-locatable storage for legal or
privacy reasons

• Utility network architectures might interfere with di-
rect data transfer

The fog-/edge computing architecture addresses many of these
problems. But aside from increased rollout costs, devices on
the network edge are usually more or less constrained in terms
of computing power and storage capacity.

The latter point becomes a critical factor if aside from live
stream data, historical time-series data are relevant for opera-
tive applications. Many applications could benefit from access
to time-series data: control algorithms could be bootstrapped
much more efficiently; state estimators refined; pattern recog-
nition software for equipment status seeded; and stream data
could be interpolated in case of equipment outage.

In this paper, we perform a rigorous analysis of storage so-
lutions and their applicability to fog-/edge computing problems
in the Smart Low Voltage Grid. We propose our own storage
solution, which is optimally suited for a set of use cases we
encounter in actual field test projects.

The remainder of this paper is structured as follows:
Section II presents use cases for data retrieval in Smart Grid
environments. It shows why neither SQL nor NoSQL solutions
are reasonable for the persistence of such data by presenting
benchmarks of the considered options. We present related
work and specify why a new implementation is necessary to
fulfill the requirements of the use cases. In Section III we
provide an evaluation of a time- and space-efficient persistence
format to be used in our solution. Section IV describes our
local implementation, the cloud functionality and additional
components that this database system consists of. We show
a comparison of our solution to the best solution of the



evaluation in Section V. Section VI finally concludes this paper
with an outlook to future work.

II. EVALUATION OF EDGE STORAGE SOLUTIONS

To conclusively assess the performance of existing solu-
tions suited for time-series storage, we propose short use case
scenarios relevant in an operative Smart Grid context. These
use cases are framed by the assumption of a reasonably scaled
edge/fog computing platform able to host a variety of appli-
cations and allowing near-instantaneous local communication
between those applications.

Use case 1
A newly installed or rebooting control algorithm
operating on Smart Grid measurement data (e.g.
three-phase voltage or current measurements) re-
quests historical data to obtain an impression of
the current grid state.

Use case 2
A grid operator views historical time-series data
on a user interface.

Use case 3
An algorithm uses historical data to interpolate
temporarily missing measurement values.

Use case 4
A topology detection algorithm requests statistical
data related to measurement frequency.

Use case 5
A preprocessor extracts relevant key performance
indicators to report to a top-tier system.

Use case 6
An algorithm detects an anomaly based on the
analysis of stored values.

Depending on the actual hardware installation of the edge/fog
system, different storage types, storage sizes, computing re-
sources and connections will be available. It can be generally
assumed that the storage will be solid-state and has to conform
to at least industrial specifications regarding temperature range,
shock resistance, EMC compliance etc., for reliability reasons.
Such a component will naturally be expensive and thus be
severely limited in storage size and non-redundant, which
posits additional constraints for the software storage solution.

A. Benchmarks

Smart Grids bring an enormous growth in the volume of
data that needs to be processed. The data that are required to be
persisted consist of the actual time series data (e.g., periodical
measurements of Smart Meters) and meta data of the sources’
data point which may include the data point’s description,
location and other meta fields as well as statistical values based
on the time series data, e.g., for detection of abnormal values.
Some of these use cases require a retrieval of time series data
of a certain time span. Data that is no longer of relevance to
any of the local use cases are no longer required to be saved
locally, keeping in mind that the amount of memory may be
limited. Permanent storage of time series data is assumed to
be available in the cloud, which provides unlimited space and
replication capabilities, and allows the use of these data for
offline algorithms, e.g., related to grid planning or long-term
equipment outage analysis. Reading back data from the cloud

would be possible, but is assumed to incur much higher latency
than local access, and is additionally subject to network quality
of service issues. From these conditions framing the use cases
presented earlier, the requirements for the local storage system
can be summarized as:

1) Access to short-term time series for many data points
(use case 1) as well as longer time series for single
data points (use cases 2, 3) needs to be fast.

2) Statistical and meta-information needs to be readily
available (use cases 4, 5, 6).

3) The size of the time-series data must be as small
as possible to accommodate limited resources on the
edge device.

4) A mechanism must exist for offloading data to the
cloud to conserve local storage space.

We evaluated different off-the-shelf SQL and NoSQL database
solutions in regards to these requirements.

Test data were generated for every second in one year
resulting in about 31.5 million entries. Each entry contains
an identifier, a timestamp, the value and an array of tags.
For the evaluation, MongoDB was selected because it is the
best known NoSQL database, H2 because authors claim that
this database system has the highest performance in their
benchmarks[6], and postgreSQL due to its high distribution.
As the underlying application platform we used in evaluation
is written in Java, H2 has the added benefit of being able to
run embedded. This is also relevant for the size of the database
management system and all libraries that are necessary to
execute it, which is more than 400 MB for MongoDB but
less than 5 MB for H2. The system used for the benchmarks
contained an Octa-Core Intel Core i7-4800MQ CPU 2.7 GHz,
16 GB RAM, SSD; running Windows 7 and Java 8. We used
H2 1.4.181; postgreSQL 9.3.5 with the JDBC driver version
9.3-1100 and MongoDB 2.6 with the Java driver version
2.12.3.

Local data retrieval is required by the use cases in two
forms: either a range of time series data of one data point is
requested or meta data including the most recent entry of one
data point is required. The first benchmark in figure 1 shows
the required size to store the test data. The second benchmark
in figure 2 shows the retrieval time for a time slice of one
month of time series data (≈2.6 million entries), while the
third benchmark in figure 3 shows the retrieval time for the
most recent entry of one data point.

1672H2
2927PostgreSQL

11621MongoDB

Fig. 1. Size of data (MB)

B. Results

The benchmarks show that regular SQL/NoSQL solutions
are not suitable for the stated requirements. Retrieval times
in both SQL databases are prohibitive for the near-realtime
requirements of operative applications. MongoDB shows ac-
ceptable timing properties, but due to its nature as a documents
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Fig. 2. Time to retrieve one month of entries (ms)
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Fig. 3. Time to retrieve most recent entry (ms)

database, the storage size is very large. In all candidates,
statistical information and meta-data must be added as separate
layer on top of the actual database.

C. Existing Solutions

There are no widely available solutions for local Low
Voltage Grid control and monitoring or general sensor mea-
surements in an industrial environment. A lot of products exist
that claim to be suited for time series storage. However none
of them able to run embedded in Java, which is preferable in
terms of system manageability, installation size and complex-
ity.

The existing solutions are either standalone (time series)
database systems or HBase/Hadoop-based. OpenTSDB as one
of these examples builds on-top of Hadoop was shown to
be reasonable for Smart Meter use cases in [7]; however in
this solution all data are stored centrally. HBase/Hadoop-based
solutions are not reasonable for our use cases to be used on
small machines due to the high overhead and complexity. A
selection of other viable solution we considered includes:

• Cube can be used for time series in JavaScript and is
built on top of MongoDB.

• RRD4J is developed in Java. While it is reasonable
for small time series, due to its round-robin fashion
outdated data will be discarded. Therefore, this solu-
tion is not reasonable for our use case.

• Cassandra is a decentralized solution that handles
scalability and high availability. The overall com-
plexity of this solution is generally too high for our
application.

• InfluxDB is a standalone solution written in Google
Go. A library to access the database from Java via a
REST interface however is available. It is expected
that solutions using REST cannot fulfill the time
constraints.

• neo4j is a graph database, where relations between
nodes can easily be expressed as relationships. It
should therefore be simple to handle time series,
however the query language is not self-explanatory
and too complex for this use case. Furthermore, in
a base evaluation, we could not achieve comparable
values to our own solution.

III. EVALUATION OF PERSISTENCE FORMATS

Based on the requirements, an efficient persistence format
for data is required under the assumption that

1) it is not possible to hold all collected data in the main
storage,

2) the gathered data need to be persisted on disk for
safety reasons, as data would get lost on failure or
restart and

3) data need to be persisted permanently on a cloud host.

The sensor data are generally small in size, but measurements
are occurring very frequently. Data are never updated, but
potentially read multiple times. The choice of an adequate
data persistence format significantly influences performance.
Text-based, human-readable formats are not considered for
this evaluation, as the storage size is bigger and the serial-
ization/deserialization procedure usually consumes significant
time. Currently, it is also not required that the format is
readable by a program written in a different programming
language. The evaluated formats represent the most popular
fraction of all available. Using a persistence format that is
already available in favor of an own requirement-driven format
yields the added benefits of being industry-tested and widely
known.

A. Java Serialization

Java Serialization is the built-in ability of Java to persist
its objects, reload and reuse them again. Not much effort is
required by the programmer, making this method the most
convenient. To define Java objects as being serializable, they
need to implement the Serializable interface, requiring
that all (non-transient) fields of the class in turn can be
serialized.

B. Protocol Buffers

Protocol Buffers were initially developed by Google to
define messages for communication between programs, offer-
ing a language-neutral mechanism for serializing structured
data. A simple language independent schema file is written
in a data description language (DDL) and compiled by use
of the protoc compiler which generates executable code for
the target platform[8]. Protocol Buffer is a data-interchange
format alone, allowing RPC (remote procedure calls) only
through third-party libraries. Generated classes can be used
in the application for population, serialization (marshaling and
unmarshaling), and access of Protocol Buffer messages. Data
that are serialized using this generated code can be written
to a file or transmitted over the network, and received at or
read in by a program potentially written in another language.
While text-based formats are self-describing, Protocol Buffer
messages stay meaningful only using the same schema for
deserialization.

C. Apache Thrift

Apache Thrift, in comparison to other formats, has the
unique advantage that it includes an RPC framework[9]. The
format itself is similar to Protocol Buffers’ format, also having
the demand to efficient cross-language data serialization. Thrift
was initially developed at Facebook in 2006, as they required



to integrate functionalities of programs written in different
languages. It was always intended to be open-source, the
project being first hosted directly at Facebook, but later moved
to Apache. The Thrift grammar is much richer than Protocol
Buffers in terms of supported constructs.

D. Apache Avro

Apache Avro is another option that provides a binary
format. In contrast to Protocol Buffers and Thrift, the schema
can be integrated in the stream which makes sense for a big
number of elements following that schema. Avro supports
reflective schema generation from a Java object. It is mainly
used in Apache Hadoop.

E. Benchmarks

Plenty of evaluations between different formats are avail-
able online, many of them being use-case driven. Objective
evaluations usually do not put one option in favour of another,
concluding that the best format depends on the requirements.

The system used for the benchmarks was described in
Section II-A. Following versions were used: Protocol Buffers
2.6.1, Apache Thrift 0.9.2 and Apache Avro 1.7.7. For eval-
uation, a file containing one data point with 2592000 mea-
surement values was written to the disk and read in again.
The number of entries represents one month of measurements
from a typical Smart Low Voltage Grid installation, with a
data occurrence of about 1 Hz, which was empirically proven
to be representative. Relevant benchmarks are:

• the time that is required to serialize the Java object to
a file on the disk, which is shown in Figure 4

• the time that is required to de-serialize this file to a
Java object again, which is shown in Figure 5

• the size of the persisted file, which is shown in
Figure 6
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Fig. 4. Write Time (ms)
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Fig. 5. Read Time (ms)
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Fig. 6. File Size (MB)

F. Format Decision and Comments

Java Serialization requires a factor 10 more time than the
other options and can also not convince in terms of file size.
Avro’s results show that it is much slower in write speed,
however much faster in read speed than Protocol Buffers
and Thrift. A winner between these three options is hard to
determine and is subject to a weighting of the results. In our
use cases it is required that files are small of size and efficient
in time that is required to write and read this file. Considering
that the schema is fixed and not subject of changes (which Avro
would support best), neither requiring RPC functionality nor
support in other languages (which Thrift would provide) and
specifying that superior timing outweighs space considerations
(all formats are very compact), the evaluation leads to the
result that Protocol Buffers is the best option for these use
cases. File compression in Apache Avro is best, however tests
show that the size of created files of data in both Protocol
Buffer and Thrift format can still be decreased by one third
using compression. This may be taken into account for very
old data in a further step.

IV. IMPLEMENTATION

The architecture of Storacle, our data base solution consists
of three layers:

1) measurements are initially saved in RAM
2) data are continuously persisted to the local mass

storage, where the data are temporarily held available
for local application’s usage

3) data are uploaded periodically to the cloud for per-
manent storage

Fig. 7. Three-layer architecture of storage tiers

Figure 7 shows currently available data in each layer as
filled boxes. White dashed boxes represent data, which are
not required in the RAM respectively at local mass storage
anymore, but were present at this layer in the past and are
now available at a higher layer. Data present at a lower layer,
but not yet locally persisted nor copied to the cloud are not



shown at higher layers. The rightmost box at RAM layer is
the most recent entry. Arrows represent the data flow to higher
layers.

A. Local storage

The utilization of Protocol Buffers results in very fast
serialization. In test cases, no delays occurred when 300
individual sensor nodes, each generating one measurement
entry per second, were stored. The data were transmitted over
a middleware based on vert.x1, temporarily saved at the local
storage and eventually uploaded to the cloud.

Time series entries, in our use case, not only contain the
time stamp and the measurement value, but also a frequency
value, describing the time span that elapsed since the reception
of the previous measurement, and a delta value, which is the
deviation between the time of the original measurement and
the time of the reception of the entry at the storage module.

Meta data are saved separate from time series data and
include the most recent entry, tags and additional meta-fields
for each data point. These tags and meta-fields are both lists
of strings, with the only difference that tags can be part
of queries. Methods are available to retrieve a list of data
points which contain either all or any of the requested tags.
Furthermore, meta data can be queried to evaluate whether a
data point is already known, and requested to return this data
point if available or requested to add this data point to meta
data if not. Tags and meta data of a data point in turn can
be retrieved, added or removed. Besides that, meta data also
include statistics of measurement, frequency and delta values.
Statistical values are limited to those that can be calculated
without having all (previous) values available. Therefore, each
received entry is used only once to update the statistics and
is no longer required afterwards. Recorded statistics include
the current count of entries (n) that influenced the statistics,
the minimum and the maximum value, as well as the mean
and the variance value. A histogram is saved for measurement
values. The current meta data is periodically persisted to the
local mass storage, where in turn it is pulled periodically by
the cloud.

Time series data are persisted to one file for each data point.
Assuming that one value per second is added per data point
(i.e. per file) and one entry shows a size of about 18 bytes in
Protocol Buffer representation, about 1 kB of size is required
per minute. Once the file size exceeds a defined threshold, it
is split in half resulting in an old file and a current file. In
tests, we used a maximum file size of 16 kB, which means
that in result each (old) file has a size of about 8 kB. The file
is split into an old file and a current file approximately each
8 minutes, thus leaving the last 8 minutes in the current file.
However, for real use cases it is assumed that the maximum
file size will be higher. All data that is part of the current file
also resides in the Java heap, thus it can be queried without
the need to read from the local mass storage medium. Data
is periodically persisted to the local mass storage to provide
safety in case of a failure. Methods exist for retrieving an entry
for a certain time stamp or a list of entries in a certain time
span. It is not possible to retrieve any data that is older than
the defined hold time and therefore no longer available at the

1http://vertx.io

local storage host. After the expiration of that time, data are
available at the cloud only.

The physical location of the data is opaque to the user.
Requests to persist data are usually not necessary as data are
persisted periodically as well as on shutdown.

B. Cloud

The cloud host is the permanent storage of data that were
collected and temporarily saved locally. Data is periodically
pulled by the cloud. Files are pushed to the cloud by the local
cloud manager only if they were not already pulled by the
cloud, therefore the push-method is only a backup method. As
already described, files are split into an old file and a current
file, if the file size exceeds some defined threshold value. Files
get removed on the local storage not before the hold time of
the entry is expired and the file was pushed to or pulled by
the cloud. In the implementation, a file gets removed on the
next run of the local cloud manager if the hold time of the last
entry of an old file has been expired. The cloud itself never
removes any file from the local storage.

For the connection between the local instance host and the
cloud, an SSH connection is used. Files are transferred over
the SSH File Transfer Protocol (SFTP).

C. Additional components

An export of time series data in a time span to a CSV
(Comma Separated Value) file is supported. The exporter uses
files exclusively from the cloud, with the consequence of a
delay of availability.

Information regarding data points and meta data can be
monitored from both local and cloud hosts by a monitoring
program. For each data point, the local and remote file size,
the corresponding earliest and latest available entry on both
machines and the statistics can be retrieved. As the pull thread
runs periodically, the time stamp of the last run as well as
the version (file time stamp) of the meta data that is currently
available on the cloud can be retrieved. Furthermore, a list of
all known data points and the required file size sum on both
machines are retrievable.

V. BENCHMARKS

To show the advantages of our solution we will face it
off with the respective winner of each benchmark category
described earlier in this paper. As this is an embedded solution,
its installation size is small in contrast to standalone solutions.

A. Benchmarks

1) Data size: This benchmark evaluates the size of the data.
The importance of this benchmark stems from the limitation
of local storage. Results are shown in Figure 8.

541Storacle
1672H2

Fig. 8. Size of data (MB)



2) Retrieve time slice: This benchmark evaluates the time
of the retrieval of all entries of one measurement point in one
month (≈2.6 million entries). The retrieval of events in a time
slice is one of two queries that occur in the use cases, hence
the high relevance. Results are shown in Figure 9.

5266Storacle
10609MongoDB

Fig. 9. Time to retrieve one month of entries (ms)

3) Retrieve most recent entry: This benchmark evaluates
the time for the retrieval of the most recent entry of one
measurement point, which is the second query that occurs in
the use cases. Results are shown in Figure 10.

22Storacle
82MongoDB

Fig. 10. Time to retrieve most recent entry (ms)

B. Comments and Results

Storacle is best suited for the requirements as due to the
use of Google’s Protocol Buffers by far requires the least
amount of space, performs extremely fast serialization/de-
serialization, is fully embedded and thus has low installation
size and maintenance complexity, and is optimally tailored to
provide an interface for time-series retrieval. As described the
solution is limited to time series data and meta data of data
points. There was no other solution that came near the values
achieved by our solution and could be used as replacement.
We inserted 10 years of data for one data point into the data
base and measured the time for this operation. The data size
increased linear as expected, while influences on retrieval time
were minimal. It shows that our solution is scalable.

VI. CONCLUSION AND FUTURE WORK

We presented a Java-based embedded data store for stor-
age of Smart Grid time-series measurement data, superior
in data retrieval time and needed storage size than off-the-
shelf solutions. It was shown that neither SQL nor NoSQL
solutions are reasonable for the requirements that stem from
the use cases related to Smart Low Voltage Grid operations.
There are various standalone solutions for time series databases
already available; however for our use cases, data need to
be temporarily stored on the local site and later persisted
permanently to the cloud. Current solutions addressing time
series data are designed to be used at a central server or a
distributed cloud, which does not fulfill these requirements.
Furthermore, the limited size of storage and the preference
for an embedded Java-based solution were not met by any
competitors.

As it stands, our solution is both flexible and scalable. With
the evolution of Smart Grid use cases, it is expected that further
adaptions will be required. A number of parameters govern
background processes: file sizes, persistence times, etc. In a

future iteration, these parameters could intelligently adapt to
local conditions, such as network quality and computational
load. For scenarios where local storage space is extremely
limited or not available at all, our solution could operate in a
RAM-to-cloud fashion. For local operative applications, read-
back from the cloud needs to be enabled.
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