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Abstract  

The transition to a climate-neutral energy system has prompted the European Union to promote the expansion of 

renewable energy sources. This change has had a profound impact on low-voltage (LV) grids, in particular an increase in 

distributed generation, driven mainly by photovoltaic systems. In addition, the emergence of high-demand technologies, 

such as electric vehicles and heat pumps, has placed further stress on LV grids. To mitigate potential grid congestion, 

flexibility options such as energy management systems (EMS) for controllable consumption devices are being 

investigated. However, the implementation of appropriate control measures requires reliable and accurate grid monitoring, 

which is currently hampered by the limited metering infrastructure in LV grids. This study presents a probabilistic digital 

twin (PDT) for LV grid monitoring, designed to integrate grid, meteorological and socio-economic data to address and 

compensate for uncertainties arising with this lack of measurement data. The probabilistic framework enables the 

assessment of the grid state in scenarios where real-time feedback from the grid is not available. The PDT calculates the 

probabilities and likelihoods of specific grid events, eliminating the need for the distribution system operator to collect 

additional data. By using the grid state assessment provided by the PDT, an EMS can implement preventive grid controls, 

in opposition to the currently applied reactive controls, to manage load flows and mitigate potential congestion. The 

effectiveness of the PDT concept is evaluated through a case study of a German low-voltage grid. 

 

 

1 Introduction 

The European Union (EU) has been actively promoting 

renewable energy sources (RES) as part of its strategy to 

decarbonize the energy system [1]. In alignment with this 

objective, EU member states have set ambitious targets for 

their gross energy generation and consumption. Germany, 

for example, aims to increase its electricity generation from 

RES to a targeted 80 % by 2030 [2]. This consequently 

implies a continued increase in decentralized electricity 

generation, primarily through the integration of 

photovoltaic (PV) systems into LV grids. Parallelly, sector 

coupling has emerged as a critical component of the clean 

energy transition, encouraging the adoption of 

technologies such as electric vehicles (EVs) and heat 

pumps (HPs). While these technologies significantly 

contribute to the decarbonization of the mobility and 

heating sectors, their high peak loads place additional 

strain on distribution grids, potentially pushing existing 

grid infrastructure to its operational limits [3]. 

To address these challenges, distribution system 

operators (DSOs) face a choice between expanding the 

grid infrastructure or leveraging flexibility options within 

the grid. While necessary in the long run due to aging 

infrastructure and ever rising energy demand, grid 

expansion involves substantial costs and complex planning 

processes. To postpone these grid expansions, leveraging 

existing flexibilities in the grid offered by decentral energy 

resources (DER), through the deployment of intelligent 

control systems like EMS, have been explored as short-

term solutions to mitigate the strain on LV grids. Even in 

the context of grid expansion, flexibility options are 

recognized as key technologies to tackle the volatility of 

RES [4]. Recent works have shown that optimized control 

of DER like battery energy storage systems (BESS) for 

grid optimization can be used to minimize peaks in reverse 

power flow and enhance local photovoltaic (PV) 

utilization. This is however a substantial shift from 

traditional reactive grid management strategies to 

proactive management in LV grids, a transition that 

introduces additional complexities and risks.  

Effective management of load flows within the electrical 

grid requires comprehensive monitoring of current grid 

states alongside reliable forecasts of future states [5]. 

While current grid states can be determined using state 

estimations and load flow calculations, the assessment of 

future grid states, which is essential for effective EMS, can 

only be achieved with forecasts of load and generation. 

This necessary estimation of future states can be 

implemented using a digital twin (DT) of the grid, which 

integrates static data such as grid topology with dynamic 

data including load and generation forecasts. This 

approach facilitates near-real-time monitoring of the grid's 

current state, enables the analysis of potential future states, 

and provides essential information for EMS-based grid 

control. 

The challenge in setting up such a DT lies however in the 

limited availability of measurement infrastructure, as a 

result of the historically developed reactive grid 

management strategies. This, in turn, complicates the 

acquisition of empirical data for the creation of an accurate 

DT or the accurate forecasting of generation and load. The 



forecasting of load, particularly at the level of individual 

households, is inherently complex due to the influence of 

numerous interdependent factors that contribute to 

uncertainty, such as unpredictable user behavior or 

unprecedented weather events. A reliable source of 

information for the development of load forecasts is data 

from smart meters, both historical and as current 

measurements. However, in Germany, the smart meter 

rollout is still in its early stages, resulting in a scarcity of 

data in most LV grids, which makes sufficiently accurate 

forecasting of household loads and, in turn, accurate DT 

representations of the grid infeasible. 

To address this limitation, this work proposes a novel 

method for creating a DT capable of operating under 

conditions of having neither real-time feedback nor 

historical data from the grid. The proposed model 

introduces a PDT which employs probabilistic modelling 

techniques, to account for the inherent uncertainties in 

household consumption behavior. By doing so it can 

provide sufficient grid information to an EMS for reliable 

load control and congestion management in LV grids. 

Moreover, the PDT model is designed to be flexible 

enough to incorporate scenarios with varying grid 

observability. 

This research is part of the project ‘ProSeCO – 

Probabilistic Sector Coupling Optimizer’ funded by the 

Clean Energy Transition Partnership, co-funded by the EU 

Commission. The paper is organized as follows, in 

Section 2 the boundary conditions considered during the 

development of the PDT are outlined, and Section 3 

describes the individual components of the PDT and EMS. 

Finally, a summary of the project’s idea is provided in 

Section 4. 

2 Methodology 

The concept for grid monitoring and control presented in 

this paper consists of two core components: the PDT used 

for the monitoring of the grid and the estimation of future 

grid states, and the EMS for proactive load flow 

management. An overview of the individual parts of the 

monitoring and control concept is given in Figure 1. As 

depicted here, the PDT itself comprises of three parts: a 

static DT of the grid using the topology, a module for 

modelling the typical demand based on socio-

economic (SE) assumptions, and a probabilistic model for 

updating the load profiles with short-term load forecasts in 

a rolling time window.  

Unlike traditional deterministic approaches, the PDT 

generates probabilistic scenarios, allowing the EMS to 

develop adaptive scheduling strategies based on varying 

likelihoods of future grid states. By issuing scenario-based 

forecasts, the PDT ensures that the EMS is not solely 

optimized for the most likely outcome, but is also prepared 

for less probable, high-risk scenarios that may cause 

significant grid instability. This probabilistic approach 

mitigates the risk of under-preparation in the face of 

atypical load patterns, thereby enhancing the system’s 

resilience to uncertainties in both consumption behavior 

and distributed generation.  

To evaluate the PDT-EMS framework a LV grid in a 

German city is adopted as a case study. This grid consists 

of a 630 kVA transformer, 114 nodes, three HPs, two 

11 kW EV charging stations, and five PV systems. The grid 

currently lacks smart meters or real-time measurement 

devices; however, voltage and current measurement 

devices are installed in six cable cabinets to facilitate the 

 
Figure 1  Schematic overview of the proposed concept 
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validation of the proposed model. This initiative is 

conducted in collaboration with the local  SO,  ith  ho’s 

support the identification and acquisition of available grid 

data, while ensuring compliance with regional data privacy 

regulations is possible. The available technical details 

include the topology of the grid, the count of decentral 

energy resources (DER), and the anonymized annual 

consumptions of the households within the selected grid 

area. Most DSOs have ready access to these data, without 

need for new infrastructure. 

The key components of the PDT-EMS framework and their 

interfaces are discussed in the following.  

2.1 Digital Twin 

The static DT is set up using the co-simulation framework 

BIFROST [6], which consists of a core simulation engine, 

that drives the dynamic data generation, as well as a 3D 

web UI, an example of which is depicted in Figure 2. The 

core itself does not produce any data, but provides a 

data-model for external simulation modules. This data-

model lists syntactic (shape of data) and semantic (units of 

data) characteristics and is freely editable, allowing the 

introduction of new domains (e.g., SE domain) into the 

simulation. Simulation values (e.g., power values from 

load flow solvers) are represented by ‘dynamics’ within the 

data-model. External modules can subscribe to the 

BIFROST core via a REST API. Due to this modular 

structure, new capabilities as described above (e.g., load 

flow solvers, control algorithms or the different 

components of the PDT) can be easily integrated into the 

simulation environment. The BIFROST UI is capable of 

building and inspecting settlements, modifying module 

configurations, starting/stopping simulations and 

visualizing the results. Therefore, making BIFROST a 

suitable modelling and simulation environment to not only 

model the case study but also use it as a simulation testbed 

for the whole PDT. The simulated results will then be 

compared to real measurements from the case study grid to 

validate the developed PDT. 

 

 
Figure  2  Example of a visualized DT using BIFROST  
 

The static part of the PDT, i.e., the DT of the grid is 

established using pre-existing modular components from 

the BIFROST framework. This setup incorporates all 

pertinent assets and DERs. These components are 

configured based on the grid topology provided by the 

DSO. In cases where specific data, such as technical 

specifications of PV or HP modules, is unavailable, 

BIFROST utilizes existing databanks containing 

information collected from comparable real-world assets to 

supplement the missing data. 

Additionally, a built-in forecasting module integrates 

meteorological predictions to generate DER forecasts. 

These forecasts are instrumental for the EMS in developing 

optimized schedules. The forecast window is set to 72 h or 

288 datapoints with a 15 min interval, as this is required for 

reliable scheduling. For the household loads, BIFROST 

allows the flexibility of using any load profile for 

configuration. Once the grid model is established, 

BIFROST can operate as a simulator, generating power 

values for both controllable and uncontrollable prosumers. 

2.2 Probabilistic load modelling  

As previously discussed, the development of a 

deterministic model based on empirical historical 

consumption data or live grid measurements is often 

impractical in many LV grids due to the lack of sufficient 

metering infrastructure. This work therefore, aims to 

investigate non-technical factors that influence 

consumption behavior in order to improve demand 

forecasting. Among these factors, SE distributions and 

regional climatic and meteorological characteristics have 

been identified to have significant influence on 

consumption [7]. SE factors, including household 

composition, age, gender, and income level, play an 

important role in shaping consumption patterns [8]. In 

addition, geographic location and seasonal climatic 

variations have a strong influence on consumption 

patterns, particularly in regions such as Central Europe 

where summer and winter temperatures differ 

significantly. As these non-technical factors interact with 

each other in complex ways, their individual effects on 

consumption cannot be precisely isolated or mapped within 

a mathematical model.  

To explore these relationships, a publicly available smart 

meter dataset comprising of data collected from 4500 

London households between November 2011 and February 

2014, is analyzed [9]. This data is also supplemented with 

associated SE information, categorized using the 

geodemographic classification system described in [10]. 

Each household is assigned a SE category based on various 

SE factors such as income and age, derived from a census 

data collected from all participating households. Given the 

high correlation between the individual factors (household 

composition, age, etc.), further analysis is limited to 

distinction based on the aggregated SE category, 

represented by alphabets (A, B, C…). 

To begin identifying typical load profiles, the smart meter 

data set is stratified into the smallest possible homogeneous 

groups. To accomplish this, households are first divided 

based on the SE category they belong to. Subsequently, to 

ensure that households within the SE categories have 

homogenous, i.e., similar consumption patterns, a k-means 

cluster analysis is applied on average values for each 

household of each SE category. Figure 3 depicts the 



average daily consumption curves for the three clusters 

detected within SE category A using k-means. The curves 

of cluster 1, 2 and 3 vary distinctively in amplitude, which 

suggests that even within an SE category, the consumption 

patterns can vary extensively. This could be because the SE 

categories do not make clear distinctions based on 

household sizes, therefore using clustering to further divide 

the dataset ensures that household sizes are accounted for. 

Each cluster of each SE category now has a similar curve 

with varying amplitudes.  

Figure 3: Three typical load curves for SE category A 

 

At runtime of the probabilistic load modelling, the first step 

is to assign a given household in the real grid or case study 

to an SE category. As mentioned above, the only input 

from the real grid for each household is its annual 

consumption value. Therefore, the annual consumption 

values of the households in each cluster are calculated in 

the next stage of the model. By plotting a histogram for 

each cluster, as shown in Figure 4, it is possible to identify 

the distribution of annual consumption values over the 

number of households. This then gives an insight into the 

probability distribution of a particular consumption given 

a particular SE category. Figure 4 shows the histogram, its 

centroid or average and the probability distribution for 

cluster 2 of SE category A.  

 

Figure 4: Probability distribution of average annual 

consumption values for SE Category A Cluster 2 

The assignment of households to a specific SE category is 

implemented using the k-Nearest Neighbors (kNN) 

algorithm, which performs a Euclidean distance 

calculation between the given annual consumption value 

and the annual consumption value of all cluster centroids. 

The proximity between the actual consumption value and 

a centroid is associated with the ‘likelihood’ of the 

household having the load curve associated with that 

cluster and SE category. This approach allows for the 

dynamic assignment of ‘m’ load profiles, representing ‘m’ 

likely probabilistic scenarios. 

Once a household has been assigned to a specific cluster 

(SE category), the second step is to determine the typical 

load curve for that household. The load curves shown in 

Figure 3 are inaccurate and vague, as they only consider 

SE categories and not other factors such as seasons or 

working and non-working days. Therefore, after clustering, 

a further segregation of the smart meter dataset is made 

based on seasons (summer, winter and transitional period), 

and working or non-working days. Figure 5 shows a 

flowchart of the data segmentation process. At the end of 

the segregations, each subgroup is homogenous, i.e., the 

households within each subgroup have similar 

consumption patterns and hence load curves. 

Subsequently, an average daily curve is calculated for each 

homogenous subgroup.    

Figure 5: Overview of the smart meter data segmentation 

 

During runtime once the household has been assigned a SE 

cluster, the model takes the current season and date as input 

to determine which load profile is to be assigned. Figure 6 

shows the load profiles of three different SE categories (A, 

F and Q). Here the clusters with the most number of 

households are depicted for working days in Winter.   
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Figure 6: Typical load profile for three different socio-

economic categories on working days in Winter 

 

Through this methodology, the load modelling module can 

use annual consumption values and temporal values to 

assign load profiles to each household in the real grid. 

Using the probability distribution, the likelihood of each 

load profile is accessed and can be further used as 

probabilistic scenarios.  

 

2.3 Short-term probabilistic load forecast 

The load profiles developed in Section 2.2 represent 

average consumption patterns, which serve as an 

approximate indicator of actual load at a specific time. 

While these profiles allow for the extraction of average 

base load and a rough estimate of real-time consumption, 

they lack the granularity necessary to accurately capture 

critical variations, particularly during intervals of extreme 

consumption (either high or low). These intervals are 

especially relevant for grid assessments, as they are more 

likely to result in congestion or potential reverse power 

flow. The short-term probabilistic load forecast module 

aims to predict the occurrence and extent of such ‘high 

ris ’ values. This probabilistic analysis aims to capture 

peak consumption patterns that might otherwise go 

undetected in a purely deterministic framework. 

As in 2.2., meteorological, temporal, and SE factors are 

isolated to facilitate a probabilistic estimation of ‘high ris ’ 

events. Meteorological variable like temperature, humidity 

and solar irradiance are selected as causal features that 

influence the occurrence of the ‘high-ris ’ events  The 

probabilities are derived from the likelihood of ‘high-ris ’ 

events, assessed across the various publicly available smart 

meter datasets under specific predefined meteorological 

and temporal conditions. 

The publicly available smart meter data used to develop 

this module are selected in such a way that they are 

relatively new compared to the dataset used in 2.2. This is 

to ensure that new loads like EV and HP are sufficiently 

represented. Each data set of a household is firstly 

categorized in clusters according to the method discussed 

in 2.2. based on the annual consumption values. This 

ensures that the detection of ‘high ris ’ events is unique to 

the SE category of the household, season and 

working/non-working days. A machine learning (ML) 

model then learns the frequency of ‘pea s’ and their 

corresponding meteorological condition for each cluster. In 

other words, the ML model aims to learn the most 

frequently occurring load, given a specific temperature, 

humidity, solar irradiance and time. Additionally, the 

model captures less frequent, but still relevant, load values 

by generating a probability distribution based on their 

observed frequency across the analyzed datasets. 

During runtime the trained model receives both the current 

measurements and forecasts of meteorological data for the 

next three hours to predict the possible demands for this 

interval. The short time horizon of three hours is chosen, as 

the variance of probabilistic forecasts is smaller when it is 

closer to the current time step. The further the forecast 

stretches into the future, the higher the variance and the 

lower the accuracy. 

2.4 Energy Management System 

For the development of an EMS capable of processing 

probabilistic outcomes of the PDT, a mathematical model 

is developed to minimize operational costs while 

accounting for uncertainties in PV generation and demand 

scenarios. The model incorporates stochastic optimization 

techniques, e.g., structured as a two-stage framework, to 

address both day-ahead scheduling and near real-time 

adjustments.  he rolling  indo  of the P  ’s 

probabilistic forecast is developed to facilitate this. In 

addition, robust optimization techniques are applied to 

ensure reliability by preparing for worst-case scenarios, 

enhancing the adaptability of the system. 

Moreover, the EMS is designed to integrate seamlessly 

with the PDT, leveraging its probabilistic approach/outputs 

to refine optimization strategies and enable proactive grid 

management (see Figure 1). By aligning optimization 

processes with the probabilistic outputs of the PDT, the 

system enhances its predictive capabilities, preventing grid 

congestion and ensuring cost-efficient operation. The EMS 

further utilizes probabilistic scenarios to train advanced 

control algorithms, ensuring scalability and robustness in 

managing decentralized energy resources. 

Building on prior research [11], the optimization 

framework used for the long-term scheduling of appliances 

employs an objective function designed for cost 

minimization: 

minOC = ∑ ∑ p
i,t
   ∙ Ci,t
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Here OC represents the total operational cost, considering 
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options under uncertain scenarios. The variables p and 

parameters C denote the power and associated cost for 

distributed generation, storage systems, load curtailment, 

load shifting, and imbalances, respectively, across time 

horizons t and scenarios s with probability π s . A detailed 

explanation of the model and parameters is provided in 

[11]. 

This approach provides a solid foundation for addressing 

the complexities of modern LV grids while promoting 

higher integration of RES and other distributed energy 

sources such as controllable loads or EVs. By combining 

exact methods, such as two-stage stochastic optimization, 

with metaheuristic techniques like evolutionary algorithms 

[12], the EMS aims to balance computational efficiency 

with solution robustness. 

The development and testing of the EMS are supported by 

scenario-based analysis and validation using real-world 

grid data   hese efforts aim to ensure the system’s ability 

to prevent grid congestion, optimize energy flows, and 

maximize RES utilization. This work emphasizes the 

importance of integrating optimization models with 

probabilistic tools to enable flexible, efficient, and 

sustainable energy management in the evolving landscape 

of LV grids [13]. 

2.5 Communication Architecture 

To ensure seamless interoperability between the DT, the 

load and short-term forecasting models and the EMS, a 

common interface is essential. While the DT, the load and 

the short-term forecasting models are designed to 

communicate within the same framework, enhancing the 

capabilities of the DT and minimizing the potential for 

communication errors, the EMS operates as an 

independent system with external interface, allowing for 

easy integration with other DT instances or field 

experiments. 

For this, a NATS interface is established, providing an 

environment-independent, real-time publish subscribe 

messaging service. NATS is a lightweight low latency 

implementation, realizing the QoS 0 paradigm and also 

supporting MQTT [14]. The NATS server is pre-

configured for four topics. The simulation environment 

publishes the state of available controllable devices and 

their operation station to a dedicated topic, triggered by any 

changes, while the prediction data for all entities receiving 

a forecast is published to a separate topic. Control 

commands and schedule intel can also be handled through 

NATS and can receive messages from both multiple EMS 

or controllers, respectively. The NATS server supports 

both direct control commands and energy management 

plans so that the interface does not have to be altered even 

when the simulation backend would be replaced by a 

hardware-in-the-loop field experiment involving 

households and power-intensive appliances. The loosely 

coupled architecture, with NATS serving as middleware, 

facilitates the seamless replacement of both sensor-

actuator systems and control instances. The simulation 

instance (PDT) or a real appliance can subscribe to the 

designated schedule and control topics.  

 

3 Conclusion 

LV grids are increasingly confronted with the mounting 

demand of emerging loads, such as HPs, and EV chargers, 

as well as decentralized RES feed-in from PV systems. 

This increased volatility poses significant challenges to the 

LV grid's operation and capacity. To mitigate these 

challenges, there is a need for reliable and accurate 

monitoring and control measures. However, the limited 

metering infrastructure in most LV grids currently hinders 

the implementation of reliable, proactive grid management 

concepts. This paper proposes a novel model that aims to 

enhance LV grid management by integrating a static DT of 

a grid with a module for load modelling and a module for 

short-term probabilistic load forecasting. The resulting 

PDT is capable of issuing probabilistic forecasts, thereby 

enabling an EMS to adapt control strategies for a range of 

possible grid states and subsequently reducing the risk of 

grid congestion. The proposed concept of a PDT and EMS 

for the monitoring and control of LV grids will be 

evaluated using a case study of a German LV grid with 

limited data availability.  

The PDT-EMS concept has been developed with the 

assumption of minimal grid data, and is scalable for various 

scenarios across countries and regions, which can be 

simulated on the virtual testbed BIFROST. With smart 

meter rollouts progressing at varying speeds across the EU 

Member States, it is essential that LV grids can be 

monitored and maintained reliably, independent of data 

availability. Thus, the adaptable PDT framework 

represents a reliable tool for grid management and 

congestion mitigation in LV grids. 
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