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Abstract

The transition to a climate-neutral energy system has prompted the European Union to promote the expansion of
renewable energy sources. This change has had a profound impact on low-voltage (LV) grids, in particular an increase in
distributed generation, driven mainly by photovoltaic systems. In addition, the emergence of high-demand technologies,
such as electric vehicles and heat pumps, has placed further stress on LV grids. To mitigate potential grid congestion,
flexibility options such as energy management systems (EMS) for controllable consumption devices are being
investigated. However, the implementation of appropriate control measures requires reliable and accurate grid monitoring,
which is currently hampered by the limited metering infrastructure in LV grids. This study presents a probabilistic digital
twin (PDT) for LV grid monitoring, designed to integrate grid, meteorological and socio-economic data to address and
compensate for uncertainties arising with this lack of measurement data. The probabilistic framework enables the
assessment of the grid state in scenarios where real-time feedback from the grid is not available. The PDT calculates the
probabilities and likelihoods of specific grid events, eliminating the need for the distribution system operator to collect
additional data. By using the grid state assessment provided by the PDT, an EMS can implement preventive grid controls,
in opposition to the currently applied reactive controls, to manage load flows and mitigate potential congestion. The

effectiveness of the PDT concept is evaluated through a case study of a German low-voltage grid.

1 Introduction

The European Union (EU) has been actively promoting
renewable energy sources (RES) as part of its strategy to
decarbonize the energy system [1]. In alignment with this
objective, EU member states have set ambitious targets for
their gross energy generation and consumption. Germany,
for example, aims to increase its electricity generation from
RES to a targeted 80 % by 2030 [2]. This consequently
implies a continued increase in decentralized electricity
generation, primarily through the integration of
photovoltaic (PV) systems into LV grids. Parallelly, sector
coupling has emerged as a critical component of the clean
energy transition, encouraging the adoption of
technologies such as electric vehicles (EVs) and heat
pumps (HPs). While these technologies significantly
contribute to the decarbonization of the mobility and
heating sectors, their high peak loads place additional
strain on distribution grids, potentially pushing existing
grid infrastructure to its operational limits [3].

To address these challenges, distribution system
operators (DSOs) face a choice between expanding the
grid infrastructure or leveraging flexibility options within
the grid. While necessary in the long run due to aging
infrastructure and ever rising energy demand, grid
expansion involves substantial costs and complex planning
processes. To postpone these grid expansions, leveraging
existing flexibilities in the grid offered by decentral energy
resources (DER), through the deployment of intelligent
control systems like EMS, have been explored as short-
term solutions to mitigate the strain on LV grids. Even in

the context of grid expansion, flexibility options are
recognized as key technologies to tackle the volatility of
RES [4]. Recent works have shown that optimized control
of DER like battery energy storage systems (BESS) for
grid optimization can be used to minimize peaks in reverse
power flow and enhance local photovoltaic (PV)
utilization. This is however a substantial shift from
traditional reactive grid management strategies to
proactive management in LV grids, a transition that
introduces additional complexities and risks.

Effective management of load flows within the electrical
grid requires comprehensive monitoring of current grid
states alongside reliable forecasts of future states [5].
While current grid states can be determined using state
estimations and load flow calculations, the assessment of
future grid states, which is essential for effective EMS, can
only be achieved with forecasts of load and generation.
This necessary estimation of future states can be
implemented using a digital twin (DT) of the grid, which
integrates static data such as grid topology with dynamic
data including load and generation forecasts. This
approach facilitates near-real-time monitoring of the grid's
current state, enables the analysis of potential future states,
and provides essential information for EMS-based grid
control.

The challenge in setting up such a DT lies however in the
limited availability of measurement infrastructure, as a
result of the historically developed reactive grid
management strategies. This, in turn, complicates the
acquisition of empirical data for the creation of an accurate
DT or the accurate forecasting of generation and load. The



forecasting of load, particularly at the level of individual
households, is inherently complex due to the influence of
numerous interdependent factors that contribute to
uncertainty, such as unpredictable user behavior or
unprecedented weather events. A reliable source of
information for the development of load forecasts is data
from smart meters, both historical and as current
measurements. However, in Germany, the smart meter
rollout is still in its early stages, resulting in a scarcity of
data in most LV grids, which makes sufficiently accurate
forecasting of household loads and, in turn, accurate DT
representations of the grid infeasible.

To address this limitation, this work proposes a novel
method for creating a DT capable of operating under
conditions of having neither real-time feedback nor
historical data from the grid. The proposed model
introduces a PDT which employs probabilistic modelling
techniques, to account for the inherent uncertainties in
household consumption behavior. By doing so it can
provide sufficient grid information to an EMS for reliable
load control and congestion management in LV grids.
Moreover, the PDT model is designed to be flexible
enough to incorporate scenarios with varying grid
observability.

This research is part of the project ‘ProSeCO -—
Probabilistic Sector Coupling Optimizer’ funded by the
Clean Energy Transition Partnership, co-funded by the EU
Commission. The paper is organized as follows, in
Section 2 the boundary conditions considered during the
development of the PDT are outlined, and Section 3
describes the individual components of the PDT and EMS.
Finally, a summary of the project’s idea is provided in
Section 4.
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2  Methodology

The concept for grid monitoring and control presented in
this paper consists of two core components: the PDT used
for the monitoring of the grid and the estimation of future
grid states, and the EMS for proactive load flow
management. An overview of the individual parts of the
monitoring and control concept is given in Figure 1. As
depicted here, the PDT itself comprises of three parts: a
static DT of the grid using the topology, a module for
modelling the typical demand based on socio-
economic (SE) assumptions, and a probabilistic model for
updating the load profiles with short-term load forecasts in
a rolling time window.

Unlike traditional deterministic approaches, the PDT
generates probabilistic scenarios, allowing the EMS to
develop adaptive scheduling strategies based on varying
likelihoods of future grid states. By issuing scenario-based
forecasts, the PDT ensures that the EMS is not solely
optimized for the most likely outcome, but is also prepared
for less probable, high-risk scenarios that may cause
significant grid instability. This probabilistic approach
mitigates the risk of under-preparation in the face of
atypical load patterns, thereby enhancing the system’s
resilience to uncertainties in both consumption behavior
and distributed generation.

To evaluate the PDT-EMS framework a LV grid in a
German city is adopted as a case study. This grid consists
of a 630 kVA transformer, 114 nodes, three HPs, two
11 kW EV charging stations, and five PV systems. The grid
currently lacks smart meters or real-time measurement
devices; however, voltage and current measurement
devices are installed in six cable cabinets to facilitate the
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Figure 1 Schematic overview of the proposed concept



validation of the proposed model. This initiative is
conducted in collaboration with the local DSO, with who’s
support the identification and acquisition of available grid
data, while ensuring compliance with regional data privacy
regulations is possible. The available technical details
include the topology of the grid, the count of decentral
energy resources (DER), and the anonymized annual
consumptions of the households within the selected grid
area. Most DSOs have ready access to these data, without
need for new infrastructure.

The key components of the PDT-EMS framework and their
interfaces are discussed in the following.

2.1 Digital Twin

The static DT is set up using the co-simulation framework
BIFROST [6], which consists of a core simulation engine,
that drives the dynamic data generation, as well as a 3D
web U, an example of which is depicted in Figure 2. The
core itself does not produce any data, but provides a
data-model for external simulation modules. This data-
model lists syntactic (shape of data) and semantic (units of
data) characteristics and is freely editable, allowing the
introduction of new domains (e.g., SE domain) into the
simulation. Simulation values (e.g., power values from
load flow solvers) are represented by ‘dynamics’ within the
data-model. External modules can subscribe to the
BIFROST core via a REST API. Due to this modular
structure, new capabilities as described above (e.g., load
flow solvers, control algorithms or the different
components of the PDT) can be easily integrated into the
simulation environment. The BIFROST UI is capable of
building and inspecting settlements, modifying module
configurations,  starting/stopping  simulations  and
visualizing the results. Therefore, making BIFROST a
suitable modelling and simulation environment to not only
model the case study but also use it as a simulation testbed
for the whole PDT. The simulated results will then be
compared to real measurements from the case study grid to
validate the developed PDT.

Figure 2 Example of a visualized DT using BIFROST

The static part of the PDT, i.e., the DT of the grid is
established using pre-existing modular components from
the BIFROST framework. This setup incorporates all
pertinent assets and DERs. These components are
configured based on the grid topology provided by the

DSO. In cases where specific data, such as technical
specifications of PV or HP modules, is unavailable,
BIFROST utilizes existing databanks containing
information collected from comparable real-world assets to
supplement the missing data.

Additionally, a built-in forecasting module integrates
meteorological predictions to generate DER forecasts.
These forecasts are instrumental for the EMS in developing
optimized schedules. The forecast window is set to 72 h or
288 datapoints with a 15 min interval, as this is required for
reliable scheduling. For the household loads, BIFROST
allows the flexibility of using any load profile for
configuration. Once the grid model is established,
BIFROST can operate as a simulator, generating power
values for both controllable and uncontrollable prosumers.

2.2 Probabilistic load modelling

As previously discussed, the development of a
deterministic model based on empirical historical
consumption data or live grid measurements is often
impractical in many LV grids due to the lack of sufficient
metering infrastructure. This work therefore, aims to
investigate  non-technical factors that influence
consumption behavior in order to improve demand
forecasting. Among these factors, SE distributions and
regional climatic and meteorological characteristics have
been identified to have significant influence on
consumption [7]. SE factors, including household
composition, age, gender, and income level, play an
important role in shaping consumption patterns [8]. In
addition, geographic location and seasonal climatic
variations have a strong influence on consumption
patterns, particularly in regions such as Central Europe
where summer and winter temperatures differ
significantly. As these non-technical factors interact with
each other in complex ways, their individual effects on
consumption cannot be precisely isolated or mapped within
a mathematical model.

To explore these relationships, a publicly available smart
meter dataset comprising of data collected from 4500
London households between November 2011 and February
2014, is analyzed [9]. This data is also supplemented with
associated SE information, categorized using the
geodemographic classification system described in [10].
Each household is assigned a SE category based on various
SE factors such as income and age, derived from a census
data collected from all participating households. Given the
high correlation between the individual factors (household
composition, age, etc.), further analysis is limited to
distinction based on the aggregated SE category,
represented by alphabets (A, B, C...).

To begin identifying typical load profiles, the smart meter
data set is stratified into the smallest possible homogeneous
groups. To accomplish this, households are first divided
based on the SE category they belong to. Subsequently, to
ensure that households within the SE categories have
homogenous, i.e., similar consumption patterns, a k-means
cluster analysis is applied on average values for each
household of each SE category. Figure 3 depicts the



average daily consumption curves for the three clusters
detected within SE category A using k-means. The curves
of cluster 1, 2 and 3 vary distinctively in amplitude, which
suggests that even within an SE category, the consumption
patterns can vary extensively. This could be because the SE
categories do not make clear distinctions based on
household sizes, therefore using clustering to further divide
the dataset ensures that household sizes are accounted for.
Each cluster of each SE category now has a similar curve
with varying amplitudes.
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Figure 3: Three typical load curves for SE category A

At runtime of the probabilistic load modelling, the first step
is to assign a given household in the real grid or case study
to an SE category. As mentioned above, the only input
from the real grid for each household is its annual
consumption value. Therefore, the annual consumption
values of the households in each cluster are calculated in
the next stage of the model. By plotting a histogram for
each cluster, as shown in Figure 4, it is possible to identify
the distribution of annual consumption values over the
number of households. This then gives an insight into the
probability distribution of a particular consumption given
a particular SE category. Figure 4 shows the histogram, its
centroid or average and the probability distribution for
cluster 2 of SE category A.
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Figure 4: Probability distribution of average annual
consumption values for SE Category A Cluster 2

The assignment of households to a specific SE category is
implemented using the k-Nearest Neighbors (kNN)
algorithm, which performs a Euclidean distance
calculation between the given annual consumption value
and the annual consumption value of all cluster centroids.
The proximity between the actual consumption value and
a centroid is associated with the ‘likelihood’ of the
household having the load curve associated with that
cluster and SE category. This approach allows for the
dynamic assignment of ‘m’ load profiles, representing ‘m’
likely probabilistic scenarios.

Once a household has been assigned to a specific cluster
(SE category), the second step is to determine the typical
load curve for that household. The load curves shown in
Figure 3 are inaccurate and vague, as they only consider
SE categories and not other factors such as seasons or
working and non-working days. Therefore, after clustering,
a further segregation of the smart meter dataset is made
based on seasons (summer, winter and transitional period),
and working or non-working days. Figure 5 shows a
flowchart of the data segmentation process. At the end of
the segregations, each subgroup is homogenous, i.e., the
households  within each subgroup have similar
consumption patterns and hence load curves.
Subsequently, an average daily curve is calculated for each
homogenous subgroup.
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Figure 5: Overview of the smart meter data segmentation

During runtime once the household has been assigned a SE
cluster, the model takes the current season and date as input
to determine which load profile is to be assigned. Figure 6
shows the load profiles of three different SE categories (A,
F and Q). Here the clusters with the most number of
households are depicted for working days in Winter.
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Figure 6: Typical load profile for three different socio-
economic categories on working days in Winter

Through this methodology, the load modelling module can
use annual consumption values and temporal values to
assign load profiles to each household in the real grid.
Using the probability distribution, the likelihood of each
load profile is accessed and can be further used as
probabilistic scenarios.

2.3  Short-term probabilistic load forecast

The load profiles developed in Section 2.2 represent
average consumption patterns, which serve as an
approximate indicator of actual load at a specific time.
While these profiles allow for the extraction of average
base load and a rough estimate of real-time consumption,
they lack the granularity necessary to accurately capture
critical variations, particularly during intervals of extreme
consumption (either high or low). These intervals are
especially relevant for grid assessments, as they are more
likely to result in congestion or potential reverse power
flow. The short-term probabilistic load forecast module
aims to predict the occurrence and extent of such ‘high
risk’ values. This probabilistic analysis aims to capture
peak consumption patterns that might otherwise go
undetected in a purely deterministic framework.

As in 2.2., meteorological, temporal, and SE factors are
isolated to facilitate a probabilistic estimation of ‘high risk’
events. Meteorological variable like temperature, humidity
and solar irradiance are selected as causal features that
influence the occurrence of the ‘high-risk’ events. The
probabilities are derived from the likelihood of ‘high-risk’
events, assessed across the various publicly available smart
meter datasets under specific predefined meteorological
and temporal conditions.

The publicly available smart meter data used to develop
this module are selected in such a way that they are
relatively new compared to the dataset used in 2.2. This is
to ensure that new loads like EV and HP are sufficiently
represented. Each data set of a household is firstly
categorized in clusters according to the method discussed
in 2.2. based on the annual consumption values. This
ensures that the detection of ‘high risk’ events is unique to
the SE category of the household, season and
working/non-working days. A machine learning (ML)
model then learns the frequency of ‘peaks’ and their

corresponding meteorological condition for each cluster. In
other words, the ML model aims to learn the most
frequently occurring load, given a specific temperature,
humidity, solar irradiance and time. Additionally, the
model captures less frequent, but still relevant, load values
by generating a probability distribution based on their
observed frequency across the analyzed datasets.

During runtime the trained model receives both the current
measurements and forecasts of meteorological data for the
next three hours to predict the possible demands for this
interval. The short time horizon of three hours is chosen, as
the variance of probabilistic forecasts is smaller when it is
closer to the current time step. The further the forecast
stretches into the future, the higher the variance and the
lower the accuracy.

2.4 Energy Management System

For the development of an EMS capable of processing
probabilistic outcomes of the PDT, a mathematical model
is developed to minimize operational costs while
accounting for uncertainties in PV generation and demand
scenarios. The model incorporates stochastic optimization
techniques, e.g., structured as a two-stage framework, to
address both day-ahead scheduling and near real-time
adjustments. The rolling window of the PDT’s
probabilistic forecast is developed to facilitate this. In
addition, robust optimization techniques are applied to
ensure reliability by preparing for worst-case scenarios,
enhancing the adaptability of the system.
Moreover, the EMS is designed to integrate seamlessly
with the PDT, leveraging its probabilistic approach/outputs
to refine optimization strategies and enable proactive grid
management (see Figure 1). By aligning optimization
processes with the probabilistic outputs of the PDT, the
system enhances its predictive capabilities, preventing grid
congestion and ensuring cost-efficient operation. The EMS
further utilizes probabilistic scenarios to train advanced
control algorithms, ensuring scalability and robustness in
managing decentralized energy resources.
Building on prior research [11], the optimization
framework used for the long-term scheduling of appliances
employs an objective function designed for cost
minimization:
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Here OC represents the total operational cost, considering
different energy resources and demand-side flexibility



options under uncertain scenarios. The variables p and
parameters C denote the power and associated cost for
distributed generation, storage systems, load curtailment,
load shifting, and imbalances, respectively, across time
horizons t and scenarios s with probability n(s). A detailed
explanation of the model and parameters is provided in
[11].

This approach provides a solid foundation for addressing
the complexities of modern LV grids while promoting
higher integration of RES and other distributed energy
sources such as controllable loads or EVs. By combining
exact methods, such as two-stage stochastic optimization,
with metaheuristic techniques like evolutionary algorithms
[12], the EMS aims to balance computational efficiency
with solution robustness.

The development and testing of the EMS are supported by
scenario-based analysis and validation using real-world
grid data. These efforts aim to ensure the system’s ability
to prevent grid congestion, optimize energy flows, and
maximize RES utilization. This work emphasizes the
importance of integrating optimization models with
probabilistic tools to enable flexible, efficient, and
sustainable energy management in the evolving landscape
of LV grids [13].

2.5 Communication Architecture

To ensure seamless interoperability between the DT, the
load and short-term forecasting models and the EMS, a
common interface is essential. While the DT, the load and
the short-term forecasting models are designed to
communicate within the same framework, enhancing the
capabilities of the DT and minimizing the potential for
communication errors, the EMS operates as an
independent system with external interface, allowing for
easy integration with other DT instances or field
experiments.

For this, a NATS interface is established, providing an
environment-independent, real-time publish subscribe
messaging service. NATS is a lightweight low latency
implementation, realizing the QoS 0 paradigm and also
supporting MQTT [14]. The NATS server is pre-
configured for four topics. The simulation environment
publishes the state of available controllable devices and
their operation station to a dedicated topic, triggered by any
changes, while the prediction data for all entities receiving
a forecast is published to a separate topic. Control
commands and schedule intel can also be handled through
NATS and can receive messages from both multiple EMS
or controllers, respectively. The NATS server supports
both direct control commands and energy management
plans so that the interface does not have to be altered even
when the simulation backend would be replaced by a
hardware-in-the-loop ~ field  experiment involving
households and power-intensive appliances. The loosely
coupled architecture, with NATS serving as middleware,
facilitates the seamless replacement of both sensor-
actuator systems and control instances. The simulation
instance (PDT) or a real appliance can subscribe to the
designated schedule and control topics.

3  Conclusion

LV grids are increasingly confronted with the mounting
demand of emerging loads, such as HPs, and EV chargers,
as well as decentralized RES feed-in from PV systems.
This increased volatility poses significant challenges to the
LV grid's operation and capacity. To mitigate these
challenges, there is a need for reliable and accurate
monitoring and control measures. However, the limited
metering infrastructure in most LV grids currently hinders
the implementation of reliable, proactive grid management
concepts. This paper proposes a novel model that aims to
enhance LV grid management by integrating a static DT of
a grid with a module for load modelling and a module for
short-term probabilistic load forecasting. The resulting
PDT is capable of issuing probabilistic forecasts, thereby
enabling an EMS to adapt control strategies for a range of
possible grid states and subsequently reducing the risk of
grid congestion. The proposed concept of a PDT and EMS
for the monitoring and control of LV grids will be
evaluated using a case study of a German LV grid with
limited data availability.

The PDT-EMS concept has been developed with the
assumption of minimal grid data, and is scalable for various
scenarios across countries and regions, which can be
simulated on the virtual testbed BIFROST. With smart
meter rollouts progressing at varying speeds across the EU
Member States, it is essential that LV grids can be
monitored and maintained reliably, independent of data
availability. Thus, the adaptable PDT framework
represents a reliable tool for grid management and
congestion mitigation in L'V grids.
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